Skip to main content
Log in

Ultrasound assisted synthesis of pyrano[3,2-b]pyran and 7-tosyl-4,7-dihydropyrano[2,3-e]indole scaffolds using barium titanate nanoparticles

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Barium titanate nanoparticles (BaTiO3 NPs) were synthesized under sonochemical conditions. The synthesized BaTiO3 NPs was characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetry analysis (TGA), Brunauer–Emmett–Teller (BET), Field emission scanning electron microscopy (FE-SEM) and Transmission electron microscopy (TEM). Morphological study reveals that BaTiO3 NPs have spherical shape with particle size ranging between of 60 and 80 nm. BaTiO3 NPs were further utilized as an efficient and reusable heterogeneous catalyst for ultrasound assisted synthesis of pyrano[3,2-b]pyran. In addition, novel 7-tosyl-4,7-dihydropyrano[2,3-e]indole derivatives were also synthesized using ultrasonication. This new catalytic method displays several notable features such as simplicity, short reaction time, easy work up, easy purification, increased yield and green reaction conditions. The nanocatalyst was reusable up to five runs with marginal loss in its catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Maury SK, Kumar D, Kamal A, Singh HK, Kumari S, Singh S (2020) A facile and efficient multicomponent ultrasound-assisted “on water” synthesis of benzodiazepine ring. Mol Divers. https://doi.org/10.1007/s11030-019-10031-y

    Article  PubMed  Google Scholar 

  2. Rasal SA, Tamore MS, Shimpi NG (2019) Ultrasound-mediated synthesis of novel α-aminophosphonates using graphene nanosheets-silver nanoparticles (GNS-AgNPs) as a recyclable heterogeneous catalyst. Chem Select 4:2293–2300. https://doi.org/10.1002/slct.201803201

    Article  CAS  Google Scholar 

  3. Eshtehardian B, Rouhani M, Mirjafary Z (2019) Green protocol for synthesis of MgFe2O4 nanoparticles and study of their activity as an efficient catalyst for the synthesis of chromene and pyran derivatives under ultrasound irradiation. J Iran Chem Soc 17:469–481. https://doi.org/10.1007/s13738-019-01783-3

    Article  CAS  Google Scholar 

  4. Akocak S, Şen B, Lolak N, Şavk A, Koca M, Kuzu S, Şen F (2017) One-pot three-component synthesis of 2-Amino-4H-Chromene derivatives by using monodisperse Pd nanomaterials anchored graphene oxide as highly efficient and recyclable catalyst. Nano-Struct Nano-Objects 11:25–31

    Article  CAS  Google Scholar 

  5. Singh P, Yadav P, Mishra A, Awasthi SK (2020) Green and mechanochemical one-pot multicomponent synthesis of bioactive 2-amino-4 H-benzo[b]pyrans via highly efficient amine-functionalized SiO2@Fe3O4 nanoparticles. ACS Omega 5:4223–4232. https://doi.org/10.1021/acsomega.9b04117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gan HF, Cao WW, Fang Z, Li X, Tang SG, Guo K (2014) Efficient synthesis of chromenopyridine and chromene via MCRs. Chinese Chem Lett 25:1357–1362. https://doi.org/10.1016/j.cclet.2014.05.008

    Article  CAS  Google Scholar 

  7. Khan MM, Yousuf R, Khan S (2015) Recent advances in multicomponent reactions involving carbohydrates. RSC Adv 5:57883–57905. https://doi.org/10.1039/c5ra08059b

    Article  CAS  Google Scholar 

  8. Reddy TR, Reddy LS, Reddy R, Nuthalapati VS, Lingappa Y, Sandra S, Kapavarapu R, Misra P, Pal M (2011) A pd-mediated new strategy to functionalized 2-aminochromenes: their in vitro evaluation as potential anti tuberculosis agents. Bioorg Med Chem Lett 21:6433–6439. https://doi.org/10.1016/j.bmcl.2011.08.088

    Article  CAS  Google Scholar 

  9. Kumar D, Reddy VB, Sharad S, Dube U, Kapur S (2009) A facile one-pot green synthesis and antibacterial activity of 2-amino-4H-pyrans and 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromenes. Eur J Med Chem 44:3805–3809. https://doi.org/10.1016/j.ejmech.2009.04.017

    Article  CAS  PubMed  Google Scholar 

  10. Shah NK, Shah NM, Patel MP, Patel RG (2013) Synthesis of 2-amino-4H-chromene derivatives under microwave irradiation and their antimicrobial activity. J Chem Sci 125:525–530. https://doi.org/10.1007/s12039-013-0421-y

    Article  CAS  Google Scholar 

  11. Sui Xiong C, Drewe J, Kasibhatla S (2006) A chemical genetics approach for the discovery of apoptosis inducers: from phenotypic cell based HTS assay and structure-activity relationship studies, to identification of potential anticancer agents and molecular targets. Curr Med Chem 13:2627–2644. https://doi.org/10.2174/092986706778201521

    Article  Google Scholar 

  12. El-Agrody AM, Halawa AH, Fouda AM, Al-Dies AAM (2017) The anti-proliferative activity of novel 4H-benzo[h]chromenes, 7H-benzo[h]-chromeno[2,3-d]pyrimidines and the structure–activity relationships of the 2-, 3-positions and fused rings at the 2, 3-positions. J Saudi Chem Soc 21:82–90. https://doi.org/10.1016/j.jscs.2016.03.002

    Article  CAS  Google Scholar 

  13. Akbarzadeh T, Rafinejad A, Mollaghasem JM, Safavi M, Fallah-Tafti A, Pordeli M, Ardestani SK, Shafiee A, Foroumadi A (2012) 2-Amino-3-cyano-4-(5-arylisoxazol-3-yl)-4H-chromenes: Synthesis and in vitro cytotoxic activity. Arch Pharm (Weinheim) 345:386–392. https://doi.org/10.1002/ardp.201100345

    Article  CAS  Google Scholar 

  14. Febriantini D, Cahyana AH, Yunarti RT (2019) A microwave assisted, Fe3O4/Camphor-catalysed three-component synthesis of 2-amino-4H-chromenes and their antibacterial and antioxidant activity. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/509/1/012036

    Article  Google Scholar 

  15. Elinson MN, Nasybullin RF, Ryzhkov FV, Egorov MP (2014) Solvent-free and “on-water” multicomponent assembling of salicylaldehydes, malononitrile and 3-methyl-2-pyrazolin-5-one: a fast and efficient route to the 2-amino-4-(1H-pyrazol-4-yl)-4H-chromene scaffold. Comptes Rendus Chim 17:437–442. https://doi.org/10.1016/j.crci.2013.08.002

    Article  CAS  Google Scholar 

  16. Khan MN, Pal S, Karamthulla S, Choudhury LH (2014) Imidazole as organocatalyst for multicomponent reactions: diversity oriented synthesis of functionalized hetero- and carbocycles using in situ-generated benzylidenemalononitrile derivatives. RSC Adv 4:3732–3741. https://doi.org/10.1039/c3ra45252b

    Article  CAS  Google Scholar 

  17. Shestopalov AA, Rodinovskaya LA, Shestopalov AM, Litvinov VP (2004) One-step synthesis of substituted 4,8-dihydropyrano[3,2-b]pyran-4-ones. Russ Chem Bull 53:724–725. https://doi.org/10.1023/B:RUCB.0000035666.05686.89

    Article  CAS  Google Scholar 

  18. Khurana JM, Nand B, Saluja P (2010) DBU: A highly efficient catalyst for one-pot synthesis of substituted 3, 4-dihydropyrano[3, 2-c]chromenes, dihydropyrano[4, 3-b]pyranes, 2-amino-4H- benzo[h]chromenes and 2-amino-4H benzo[g]chromenes in aqueous medium. Tetrahedron 66:5637–5641. https://doi.org/10.1016/j.tet.2010.05.08

    Article  CAS  Google Scholar 

  19. Shinde S, Rashinkar G, Salunkhe R (2013) DABCO entrapped in agar-agar: a heterogeneous gelly catalyst for multi-component synthesis of 2-amino-4H-chromenes. J Mol Liq 178:122–126. https://doi.org/10.1016/j.molliq.2012.10.019

    Article  CAS  Google Scholar 

  20. El-Agrody AM, Fouda AM, Khattab ESAEH (2013) Synthesis, antitumor activity of 2-amino-4H-benzo[h]chromene derivatives, and structure-activity relationships of the 3- and 4-positions. Med Chem Res 22:6105–6120. https://doi.org/10.1007/s00044-013-0602-8

    Article  CAS  Google Scholar 

  21. Mobinikhaledi A, Moghanian H, Sasani F (2011) Microwave-assisted one-pot synthesis of 2-amino-2-chromenes using piperazine as a catalyst under solvent-free conditions. Synth React Inorg Met Nano-Metal Chem 41:262–265. https://doi.org/10.1080/15533174.2011.555857

    Article  CAS  Google Scholar 

  22. Albadi J, Mansournezhad A, Darvishi-Paduk M (2013) Poly(4-vinylpyridine): as a green, efficient and commercial available basic catalyst for the synthesis of chromene derivatives. Chin Chem Lett 24:208–210. https://doi.org/10.1016/j.cclet.2013.01.020

    Article  CAS  Google Scholar 

  23. Srilakshmi C, Saraf R, Prashanth V, Rao GM, Shivakumara C (2016) Structure and catalytic activity of Cr-doped BaTiO3 nanocatalysts synthesized by conventional oxalate and microwave assisted hydrothermal methods. Inorg Chem 55:4795–4805. https://doi.org/10.1021/acs.inorgchem.6b00240

    Article  CAS  PubMed  Google Scholar 

  24. Thamima M, Andou Y, Karuppuchamy S (2017) Microwave assisted synthesis of perovskite structured BaTiO3 nanospheres via peroxo route for photocatalytic applications. Ceram Int 43:556–563. https://doi.org/10.1016/j.ceramint.2016.09.194

    Article  CAS  Google Scholar 

  25. Kleineberg H, Eisenacher M, Lange H, Strutz H, Palkovits R (2016) Perovskites and metal nitrides as catalysts in the base-catalysed aldol addition of isobutyraldehyde to formaldehyde. Catal Sci Technol 6:6057–6065. https://doi.org/10.1039/c5cy01479d

    Article  CAS  Google Scholar 

  26. Srilakshmi C, Saraf R, Shivakumara C (2018) Structural studies of multifunctional SrTiO3 nanocatalyst synthesized by microwave and oxalate methods: its catalytic application for condensation, hydrogenation, and amination reactions. ACS Omega 3:10503–10512. https://doi.org/10.1021/acsomega.8b01255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pal N, Paul M, Bhaumik A (2011) New mesoporous perovskite ZnTiO3 and its excellent catalytic activity in liquid phase organic transformations. Appl Catal A Gen 393:153–160. https://doi.org/10.1016/j.apcata.2010.11.037

    Article  CAS  Google Scholar 

  28. Yamaguchi S, Okuwa T, Wada H, Yamaura H, Yahiro H (2015) Cyanosilylation of benzaldehyde with TMSCN over perovskite-type oxide catalyst prepared by thermal decomposition of heteronuclear cyano complex precursors. Res Chem Intermed 41:9551–9560. https://doi.org/10.1007/s11164-015-1980-y

    Article  CAS  Google Scholar 

  29. Singh H, Rajput JK (2017) Chelation and calcination promoted preparation of perovskite-structured BiFeO3 nanoparticles: a novel magnetic catalyst for the synthesis of dihydro-2-oxypyrroles. J Mater Sci 53:3163–3188. https://doi.org/10.1007/s10853-017-1790-2

    Article  CAS  Google Scholar 

  30. Kamata K (2019) Perovskite oxide catalysts for liquid-phase organic reactions. Bull Chem Soc Jpn 92:133–151. https://doi.org/10.1246/bcsj.20180260

    Article  CAS  Google Scholar 

  31. Vuttivong S, Niemcharoen S, Seeharaj P, Vittayakorn WC, Vittayakorn N (2013) Sonochemical synthesis of spherical BaTiO3 nanoparticles. Ferroelectrics 457:44–52. https://doi.org/10.1080/00150193.2013.847332

    Article  CAS  Google Scholar 

  32. Moghtada A, Ashiri R (2015) Nanocrystals of XTiO3 (X = Ba, Sr, Ni, BaxTi1-x) materials obtained through a rapid one-step methodology at 50 °C. Ultrason Sonochem 26:293–304. https://doi.org/10.1016/j.ultsonch.2015.02.006

    Article  CAS  PubMed  Google Scholar 

  33. Banitaba SH, Safari J, Khalili SD (2013) Ultrasound promoted one-pot synthesis of 2-amino-4,8-dihydropyrano[3,2-b] pyran-3-carbonitrile scaffolds in aqueous media: a complementary “green chemistry” tool to organic synthesis. Ultrason Sonochem 20:401–407. https://doi.org/10.1016/j.ultsonch.2012.07.007

    Article  CAS  PubMed  Google Scholar 

  34. Sarrafi Y, Mehrasbi E, Mashalchi SZ (2015) MCM-41-SO3H: an efficient, reusable, heterogeneous catalyst for the one-pot, three-component synthesis of pyrano[3,2-b]pyrans. Res Chem Intermed. https://doi.org/10.1007/s11164-015-2275-z

    Article  Google Scholar 

  35. Zirak M, Azinfar M, Khalili M (2017) Three-component reactions of kojic acid: Efficient synthesis of dihydropyrano[3,2-b]chromenediones and aminopyranopyrans catalyzed with nano-Bi2O3-ZnO and nano-ZnO. Curr Chem Lett 6:105–116. https://doi.org/10.5267/j.ccl.2017.4.001

    Article  Google Scholar 

  36. Kataev EA, Ramana Reddy M, Niranjan Reddy G, Reddy VH, Suresh Reddy C, Subba Reddy BV (2016) Supramolecular catalysis by β-cyclodextrin for the synthesis of kojic acid derivatives in water. New J Chem 40:1693–1697. https://doi.org/10.1039/c5nj01902h

    Article  CAS  Google Scholar 

  37. Ostadsharif Memar F, Khazdooz L, Zarei A, Abbaspourrad A (2020) Green synthesis of pyrano [3,2-b]pyran derivatives using nano Si–Mg–fluorapatite catalyst and the evaluation of their antibacterial and antioxidant properties. Med Chem Res 29:1792–1803. https://doi.org/10.1007/s00044-020-02598-1

    Article  CAS  Google Scholar 

  38. Eftekhari-Sis B, Sarvari-Karajabad M, Haqverdi S (2017) Pyridylmethylaminoacetic acid functionalized Fe3O4 magnetic nanorods as an efficient catalyst for the synthesis of 2-aminochromene and 2-aminopyran derivatives. Sci Iran 24:3022–3031. https://doi.org/10.24200/sci.2017.4513

    Article  Google Scholar 

  39. Baghbanian SM (2014) Synthesis, characterization, and application of Cu2O and NiO nanoparticles supported on natural nanozeolite clinoptilolite as a heterogeneous catalyst for the synthesis of pyrano[3,2-b]pyrans and pyrano[3,2-c]pyridones. RSC Adv 4:59397–59404. https://doi.org/10.1039/c4ra10537k

    Article  CAS  Google Scholar 

  40. Teimuri-Mofrad R, Esmati S, Rabiei M, Gholamhosseini-Nazari M (2017) Efficient synthesis of new pyrano[3,2-b]pyran derivatives via Fe3O4@SiO2-IL-Fc catalyzed three-component reaction. Heterocycl Commun 23:439–444. https://doi.org/10.1515/hc-2017-0140

    Article  CAS  Google Scholar 

  41. Gholamhosseini-Nazari M, Esmati S, Safa KD, Khataee A, Teimuri-Mofrad R (2018) Fe3O4@SiO2 -BenzIm-Fc[Cl]/ZnCl2: a novel and efficient nano-catalyst for the one-pot three-component synthesis of pyran annulated bis-heterocyclic scaffolds under ultrasound irradiation. Res Chem Intermed 45:1841–1862. https://doi.org/10.1007/s11164-018-3704-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to DST-PURSE, New Delhi for award of research fellowship. We are also thankful to Microanalytical Laboratory, University of Mumbai for providing characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. V. Ramana.

Ethics declarations

Conflict of interest

The authors declare that there are no financial or commercial conflicts of interest that could have appeared to influence the work stated in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Information 1 (PDF 2939 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikh, S., Rasal, S. & Ramana, M.M.V. Ultrasound assisted synthesis of pyrano[3,2-b]pyran and 7-tosyl-4,7-dihydropyrano[2,3-e]indole scaffolds using barium titanate nanoparticles. Reac Kinet Mech Cat 133, 405–424 (2021). https://doi.org/10.1007/s11144-021-01972-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-01972-3

Keywords

Navigation