Skip to main content
Log in

Investigation of the effect of microwave heated reactor on ethane dehydrogenation over KIT-6 supported catalysts

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Non-oxidative conversion of ethane to hydrogen and ethylene was carried out with Cr and Co-based KIT-6 supported catalysts in a conventional heated reactor (C-HRS) and microwave heated reactor (M-HRS) systems. The catalysts were synthesized by wet impregnation of hydrothermally prepared KIT-6 support. X-ray diffraction (XRD) and N2 adsorption–desorption studies showed that the well-ordered three-dimensional mesoporous structure of the KIT-6 support was preserved after 10wt% metal loading. The pyridine adsorbed diffuse reflectance FT-IR (DRIFT) spectroscopy results revealed the presence of Lewis acid sites on the catalysts. The incorporation of Co into the structure slightly increased the Lewis acid sites. The Cr@KIT-6 catalyst exhibited the highest ethylene and hydrogen selectivity with a C2H4/H2 ratio of 1.00 at 650 °C in C-HRS. To compare the effect of active metal on the catalytic activity, Co@KIT-6 catalyst was tested at 650 °C in C-HRS. Although, the ethane conversion values of Cr and Co-based catalysts were similar, Co@KIT-6 catalyst exhibited lower C2H4/H2 ratio (0.51). The characterization studies of the spent catalysts confirmed higher amount of coke deposited on the Co@KIT-6 catalyst. The effect of microwave-assisted heating on the catalytic activity was investigated with Cr and Co-based catalysts at 450 °C in M-HRS. It was determined that much higher ethane conversion and yield values were obtained even at lower temperatures in M-HRS compared to the C-HRS. While the H2 yield was 0.15 at 650 °C in C-HRS, this value increased to 0.37 at 450 °C in M-HRS.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Quijada R, Rojas R, Bazan G, Komon ZJA, Mauler RS, Galland GB (2001) Synthesis of branched polyethylene from ethylene by tandem action of iron and zirconium single site catalysts. Macromolecules 34:2411–2417. https://doi.org/10.1021/ma0012088

    Article  CAS  Google Scholar 

  2. Ahn SJ, Yun GN, Takagaki A, Kikuchi R, Oyama ST (2018) Effects of pressure, contact time, permeance, and selectivity in membrane reactors: the case of the dehydrogenation of ethane. Sep Purif Technol 194:197–206. https://doi.org/10.1016/j.seppur.2017.11.037

    Article  CAS  Google Scholar 

  3. Liu J, He P, Wang L, Liu H, Cao Y, Li H (2018) An efficient and stable Cu/SiO2 catalyst for the syntheses of ethylene glycol and methanol via chemoselective hydrogenation of ethylene carbonate. Chinese J Catal 39:1283–1293. https://doi.org/10.1016/S1872-2067(18)63032-3

    Article  CAS  Google Scholar 

  4. Lu X, Xu H, Yan J, Zhou WJ, Liebens A, Wu P (2018) One-pot synthesis of ethylene glycol by oxidative hydration of ethylene with hydrogen peroxide over titanosilicate catalysts. J Catal 358:89–99. https://doi.org/10.1016/j.jcat.2017.12.002

    Article  CAS  Google Scholar 

  5. Huang Y, Dong X, Yu Y, Zhang M (2017) Kinetic Monte Carlo study of vinyl acetate synthesis from ethylene acetoxylation on Pd(100) and Pd/Au(100). Appl Surf Sci 423:793–799. https://doi.org/10.1016/j.apsusc.2017.06.228

    Article  CAS  Google Scholar 

  6. Jira R (2009) Acetaldehyde from ethylene – a retrospective on the discovery of the wacker process. Angew Chemie Int Ed 48:9034–9037. https://doi.org/10.1002/anie.200903992

    Article  CAS  Google Scholar 

  7. Wattanapaphawong P, Reubroycharoen P, Mimura N, Sato O, Yamaguchi A (2020) Effect of carbon number on the production of propylene and ethylene by catalytic cracking of straight-chain alkanes over phosphorus-modified ZSM-5. Fuel Process Technol 202:106367. https://doi.org/10.1016/j.fuproc.2020.106367

    Article  CAS  Google Scholar 

  8. Sun P, Siddiqi G, Vining WC, Chi M, Bell AT (2011) Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation. J Catal 282:165–174. https://doi.org/10.1016/j.jcat.2011.06.008

    Article  CAS  Google Scholar 

  9. Avila AM, Yu Z, Fazli S, Sawada JA, Kuznicki SM (2014) Hydrogen-selective natural mordenite in a membrane reactor for ethane dehydrogenation. Microporous Mesoporous Mater 190:301–308. https://doi.org/10.1016/j.micromeso.2014.02.024

    Article  CAS  Google Scholar 

  10. Ji Z, Lv H, Pan X, Bao X (2018) Enhanced ethylene selectivity and stability of Mo/ZSM5 upon modification with phosphorus in ethane dehydrogenation. J Catal 361:94–104. https://doi.org/10.1016/j.jcat.2017.12.023

    Article  CAS  Google Scholar 

  11. Dong Y, Chen Q, Qiu C, Ma X, Wang Y, Sun T, Fan G (2020) Synergistic catalysis of Pd–Ni(OH)2 hybrid anchored on porous carbon for hydrogen evolution from the dehydrogenation of formic acid. Int J Hydrogen Energy 45:12849–12858. https://doi.org/10.1016/j.ijhydene.2020.03.016

    Article  CAS  Google Scholar 

  12. Elmaci G (2020) Microwave assisted green synthesis of Ag/AgO nanocatalyst as an efficient OER catalyst in neutral media. Hittite J Sci Eng 7:61–65. https://doi.org/10.17350/hjse19030000174

    Article  Google Scholar 

  13. Vincent I, Bessarabov D (2018) Low cost hydrogen production by anion exchange membrane electrolysis: a review. Renew Sustain Energy Rev 81:1690–1704. https://doi.org/10.1016/j.rser.2017.05.258

    Article  CAS  Google Scholar 

  14. Heracleous E, Lemonidou AA (2006) Reaction pathways of ethane oxidative and non-oxidative dehydrogenation on γ-Al2O3 studied by Temperature-Programmed reaction (TP-reaction). Catal Today 112:23–27. https://doi.org/10.1016/j.cattod.2005.11.040

    Article  CAS  Google Scholar 

  15. Shen W, Wang Y, Shi X, Shah N, Huggins F, Bollineni S, Seehra M, Huffman G (2007) Catalytic nonoxidative dehydrogenation of ethane over Fe-Ni and Ni catalysts supported on Mg(Al)O to produce hydrogen and easily purified carbon nanotubes. Energy Fuels 21:3520–3529. https://doi.org/10.1021/ef7004018

    Article  CAS  Google Scholar 

  16. Tsyganok A, Green RG, Giorgi JB, Sayari A (2007) Non-oxidative dehydrogenation of ethane to ethylene over chromium catalysts prepared from layered double hydroxide precursors. Catal Commun 8:2186–2193. https://doi.org/10.1016/j.catcom.2007.04.031

    Article  CAS  Google Scholar 

  17. Ausavasukhi A, Sooknoi T (2014) Tunable activity of [Ga]HZSM-5 with H2 treatment: ethane dehydrogenation. Catal Commun 45:63–68. https://doi.org/10.1016/j.catcom.2013.10.026

    Article  CAS  Google Scholar 

  18. Leth KT, Rovik AK, Holm MS, Brorson M, Jakobsen HJ, Skibsted J, Christensen CH (2008) Synthesis and characterization of conventional and mesoporous Ga-MFI for ethane dehydrogenation. Appl Catal A Gen 348:257–265. https://doi.org/10.1016/j.apcata.2008.07.003

    Article  CAS  Google Scholar 

  19. Wegener EC, Wu Z, Tseng HT, Gallagher JR, Ren Y, Diaz RE, Ribeiro FH, Miller JT (2018) Structure and reactivity of Pt–In intermetallic alloy nanoparticles: highly selective catalysts for ethane dehydrogenation. Catal Today 299:146–153. https://doi.org/10.1016/j.cattod.2017.03.054

    Article  CAS  Google Scholar 

  20. Wu J, Peng Z, Bell AT (2014) Effects of composition and metal particle size on ethane dehydrogenation over PtxSn100-x/Mg(Al)O (70≤x≤100). J Catal 311:161–168. https://doi.org/10.1016/j.jcat.2013.11.017

    Article  CAS  Google Scholar 

  21. Bugrova TA, Dutov VV, Svetlichnyi VA, Cortés Corberán V, Mamontov GV (2019) Oxidative dehydrogenation of ethane with CO2 over CrOx catalysts supported on Al2O3, ZrO2, CeO2 and CexZr1-xO2. Catal Today 333:71–80. https://doi.org/10.1016/j.cattod.2018.04.047

    Article  CAS  Google Scholar 

  22. Zhang C, Yue H, Huang Z, Li S, Wu G, Ma X, Gong J (2013) Hydrogen production via steam reforming of ethanol on phyllosilicate- derived Ni/SiO2: enhanced metal-support interaction and catalytic stability. ACS Sustain Chem Eng 1:161–173. https://doi.org/10.1021/sc300081q

    Article  CAS  Google Scholar 

  23. Li B, Luo X, Huang J, Wang X, Liang Z (2017) One-pot synthesis of ordered mesoporous Cu-KIT-6 and its improved catalytic behavior for the epoxidation of styrene: effects of the pH value of the initial gel. Chinese J Catal 38:518–528. https://doi.org/10.1016/S1872-2067(17)62767-0

    Article  CAS  Google Scholar 

  24. Chirra S, Siliveri S, Kumar A, Srinath A, Sripal G, Gujjula R (2019) Pd-KIT-6: synthesis of a novel three-dimensional mesoporous catalyst and studies on its enhanced catalytic applications. J Porous Mater 26:1667–1677

    Article  CAS  Google Scholar 

  25. Taghizadeh M, Akhoundzadeh H, Rezayan A (2018) Excellent catalytic performance of 3D-mesoporous KIT-6 supported Cu and Ce nanoparticles in methanol steam reforming. Int J Hydrogen Energy 43:10926–10937. https://doi.org/10.1016/j.ijhydene.2018.05.034

    Article  CAS  Google Scholar 

  26. Kleitz F, Choi SH, Ryoo R (2003) Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem Commun 9:2136–2137. https://doi.org/10.1039/b306504a

    Article  CAS  Google Scholar 

  27. Sun J, Wang W, Yue Q (2016) Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials 9:231. https://doi.org/10.3390/ma9040231

    Article  CAS  PubMed Central  Google Scholar 

  28. Guler M, Korkusuz C, Varisli D (2019) Catalytic decomposition of ammonia for hydrogen production over carbon nanofiber supported Fe and Mo catalysts in a microwave heated reactor. Int J Chem React Eng 17:1–13. https://doi.org/10.1515/ijcre-2018-0162

    Article  CAS  Google Scholar 

  29. Robinson B, Caiola A, Bai X, Abdelsayed V, Shekhawat D, Hu J (2020) Catalytic direct conversion of ethane to value-added chemicals under microwave irradiation. Catal Today. https://doi.org/10.1016/j.cattod.2020.03.001

    Article  Google Scholar 

  30. Bermúdez JM, Beneroso D, Rey-Raap N, Arenillas A, Menéndez JA (2015) Energy consumption estimation in the scaling-up of microwave heating processes. Chem Eng Process Process Intensif 95:1–8. https://doi.org/10.1016/j.cep.2015.05.001

    Article  CAS  Google Scholar 

  31. Mohamed BA, Ellis N, Kim CS, Bi X (2019) Microwave-assisted catalytic biomass pyrolysis: effects of catalyst mixtures. Appl Catal B Environ 253:226–234. https://doi.org/10.1016/j.apcatb.2019.04.058

    Article  CAS  Google Scholar 

  32. Xie Q, Li S, Gong R, Zheng G, Wang Y, Xu P, Duan Y, Yu S, Lu M, Ji W, Nie Y, Ji J (2019) Microwave-assisted catalytic dehydration of glycerol for sustainable production of acrolein over a microwave absorbing catalyst. Appl Catal B Environ 243:455–462. https://doi.org/10.1016/j.apcatb.2018.10.058

    Article  CAS  Google Scholar 

  33. Tan Y, Wang S, Li L, Meng B, Chen J, Yang Z, Yan K, Qin X (2019) Application of microwave heating for methane dry reforming catalyzed by activated carbon. Chem Eng Process Process Intensif 145:107662. https://doi.org/10.1016/j.cep.2019.107662

    Article  CAS  Google Scholar 

  34. Ke C, Zhang Y, Gao Y, Pan Y, Li B, Wang Y, Ruan R (2019) Syngas production from microwave-assisted air gasification of biomass: part 1 model development. Renew Energy 140:772–778. https://doi.org/10.1016/j.renene.2019.03.025

    Article  CAS  Google Scholar 

  35. Xu W, Zhou J, Su Z, Ou Y, You Z (2016) Microwave catalytic effect: a new exact reason for microwave-driven heterogeneous gas-phase catalytic reactions. Catal Sci Technol 6:698–702. https://doi.org/10.1039/c5cy01802a

    Article  CAS  Google Scholar 

  36. Wildfire C, Abdelsayed V, Shekhawat D, Spencer MJ (2018) Ambient pressure synthesis of ammonia using a microwave reactor. Catal Commun 115:64–67. https://doi.org/10.1016/j.catcom.2018.07.010

    Article  CAS  Google Scholar 

  37. Bai X, Tiwari S, Robinson B, Killmer C, Li L, Hu J (2018) Microwave catalytic synthesis of ammonia from methane and nitrogen. Catal Sci Technol 8:6302–6305. https://doi.org/10.1039/c8cy01355a

    Article  CAS  Google Scholar 

  38. Varisli D, Korkusuz C, Dogu T (2017) Microwave-assisted ammonia decomposition reaction over iron incorporated mesoporous carbon catalysts. Appl Catal B Environ 201:370–380. https://doi.org/10.1016/j.apcatb.2016.08.032

    Article  CAS  Google Scholar 

  39. Kim DK, Cha CY, Lee WT, Kim JH (2001) Microwave dehydrogenation of ethane to ethylene. J Ind Eng Chem 7:363–374

    CAS  Google Scholar 

  40. Ng S, Fairbridge C, Mutyala S, Liu Y, Bélanger JMR, Paré JRJ (2013) Microwave-assisted conversion of ethane to ethylene. Appl Petrochemical Res 3:55–61. https://doi.org/10.1007/s13203-013-0024-z

    Article  CAS  Google Scholar 

  41. Ayad MM, Salahuddin NA, El-nasr AA, Torad NL (2016) Amine-functionalized mesoporous silica KIT-6 as a controlled release drug delivery carrier. Microporous Mesoporous Mater 229:166–177. https://doi.org/10.1016/j.micromeso.2016.04.029

    Article  CAS  Google Scholar 

  42. Fernandes FRD, Pinto FGHS, Lima ELF, Souza LD, Caldeira VPS, Santos AGD (2018) Influence of synthesis parameters in obtaining KIT-6 mesoporous material. Appl Sci. https://doi.org/10.3390/app8050725

    Article  Google Scholar 

  43. Karthikeyan GG, Boopathi G, Pandurangan A, Boopathi G, Pandurangan A (2018) Facile synthesis of mesoporous carbon spheres using 3D Cubic Fe-KIT-6 by CVD technique for the application of active electrode materials in supercapacitors. ACS Omega 3:16658–16671. https://doi.org/10.1021/acsomega.8b02160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Alalwan HA, Cwiertny DM, Grassian VH (2017) Co3O4 nanoparticles as oxygen carriers for chemical looping combustion: a materials characterization approach to understanding oxygen carrier performance. Chem Eng J 319:279–287. https://doi.org/10.1016/j.cej.2017.02.134

    Article  CAS  Google Scholar 

  45. Zhao XQ, Veintemillas-Verdaguer S, Bomati-Miguel O, Morales MP, Xu HB (2005) Thermal history dependence of the crystal structure of Co fine particles. Phys Rev B Condens Matter Mater Phys 71:024106. https://doi.org/10.1103/PhysRevB.71.024106

    Article  CAS  Google Scholar 

  46. Smith DK, Berry LG (1974) Selected powder diffraction data for minerals. Joint Committee on Powder Diffraction Standards, Pennsylvania

    Google Scholar 

  47. Anandhi JT, Rayer SL, Chithambarathanu T (2017) Synthesis, FTIR studies and optical properties of aluminium doped chromium oxide nanoparticles by microwave irradiation at different concentrations. Chem Mater Eng 5:43. https://doi.org/10.13189/cme.2017.050204

    Article  CAS  Google Scholar 

  48. Cychosz KA, Thommes M (2018) Progress in the physisorption characterization of nanoporous gas storage materials. Engineering 4:559–566. https://doi.org/10.1016/j.eng.2018.06.001

    Article  CAS  Google Scholar 

  49. Chen S, Pan X, Miao C, Xie H, Zhou G, Jiao Z, Zhang X (2018) Study of catalytic hydrodeoxygenation performance for the Ni/KIT-6 catalysts. J Saudi Chem Soc 22:614–627. https://doi.org/10.1016/j.jscs.2017.11.002

    Article  CAS  Google Scholar 

  50. Xia D, Chen Y, Li C, Liu C, Zhou G (2018) Carbon dioxide reforming of methane to syngas over ordered mesoporous Ni/KIT-6 catalysts. Int J Hydrogen Energy 43:20488–20499. https://doi.org/10.1016/j.ijhydene.2018.09.059

    Article  CAS  Google Scholar 

  51. Kishor R, Ghoshal AK (2017) Understanding the hydrothermal, thermal, mechanical and hydrolytic stability of mesoporous KIT-6: a comprehensive study. Microporous Mesoporous Mater 242:127–135. https://doi.org/10.1016/j.micromeso.2017.01.020

    Article  CAS  Google Scholar 

  52. Xu L, Wang C, Guan J (2014) Preparation of acid-base bifunctional mesoporous KIT-6 (KIT: Korea Advanced Institute of Science and Technology) and its catalytic performance in Knoevenagel reaction. J Solid State Chem 213:250–255. https://doi.org/10.1016/j.jssc.2014.03.010

    Article  CAS  Google Scholar 

  53. Liu H, Xu S, Zhou G, Huang G, Huang S, Xiong K (2018) CO2 hydrogenation to methane over Co/KIT-6 catalyst: effect of reduction temperature. Chem Eng J 351:65–73. https://doi.org/10.1016/j.cej.2018.06.087

    Article  CAS  Google Scholar 

  54. Świrk K, Gálvez ME, Motak M, Grzybek T, Rønning M, Da Costa P (2019) Syngas production from dry methane reforming over yttrium-promoted Nickel-KIT-6 catalysts. Int J Hydrogen Energy 44(1):274–286. https://doi.org/10.1016/j.ijhydene.2018.02.164

    Article  CAS  Google Scholar 

  55. Xu J, Hong Y, Cheng MJ, Xue B, Li YX (2019) Vanadyl acetylacetonate grafted on ordered mesoporous silica KIT-6 and its enhanced catalytic performance for direct hydroxylation of benzene to phenol. Microporous Mesoporous Mater 285:223–230. https://doi.org/10.1016/j.micromeso.2019.05.024

    Article  CAS  Google Scholar 

  56. Merkache R, Fechete I, Maamache M, Bernard M, Turek P, Al-Dalama K, Garin F (2015) 3D ordered mesoporous Fe-KIT-6 catalysts for methylcyclopentane (MCP) conversion and carbon dioxide (CO2) hydrogenation for energy and environmental applications. Appl Catal A Gen 504:672–681. https://doi.org/10.1016/j.apcata.2015.03.032

    Article  CAS  Google Scholar 

  57. Dragoi B, Ungureanu A, Chirieac A, Hulea V, Royer S, Dumitriu E (2013) Enhancing the performance of SBA-15-supported copper catalysts by chromium addition for the chemoselective hydrogenation of trans-cinnamaldehyde. Catal Sci Technol 3:2319–2329. https://doi.org/10.1039/c3cy00198a

    Article  CAS  Google Scholar 

  58. Arbag H, Tasdemir HM, Yagizatli Y, Kucuker M, Yasyerli S (2020) Effect of preparation technique on the performance of Ni and Ce incorporated modified alumina catalysts in CO2 reforming of methane. Catal Letters 150:3256–3268. https://doi.org/10.1007/s10562-020-03228-6

    Article  CAS  Google Scholar 

  59. Moslemi A, Najafi Chermahini A, Najafi Sarpiri J, Rezaei S, Barati M (2019) VOHPO4.5H2O/KIT-6 composites: preparation and their application in extractive and catalytic oxidation desulfurization of benzothiophene and dibenzothiphene. J Taiwan Inst Chem Eng 97:237–246. https://doi.org/10.1016/j.jtice.2019.01.030

    Article  CAS  Google Scholar 

  60. Arbag H (2018) Effect of impregnation sequence of Mg on performance of mesoporous alumina supported Ni catalyst in dry reforming of methane. Int J Hydrogen Energy 43:6561–6574. https://doi.org/10.1016/j.ijhydene.2018.02.063

    Article  CAS  Google Scholar 

  61. Taifan WE, Yan GX, Baltrusaitis J (2017) Surface chemistry of MgO/SiO2 catalyst during the ethanol catalytic conversion to 1,3-butadiene: in-situ DRIFTS and DFT study. Catal Sci Technol 7:4648–4668. https://doi.org/10.1039/c7cy01556a

    Article  CAS  Google Scholar 

  62. Saito H, Sekine Y (2020) Catalytic conversion of ethane to valuable products through non-oxidative dehydrogenation and dehydroaromatization. RSC Adv 10:21427–21453. https://doi.org/10.1039/d0ra03365k

    Article  CAS  Google Scholar 

  63. Megia PJ, Carrero A, Calles JA, Vizcaino AJ (2019) Hydrogen production from steam reforming of acetic acid as a model compound of the aqueous fraction of microalgae HTL using Co-M/SBA-15 (M: Cu, Ag, Ce, Cr) catalysts. Catalysts 9:1013–1031

    Article  CAS  Google Scholar 

  64. Zhang X, Hayward DO, Mingos DMP (2003) Effects of microwave dielectric heating on heterogeneous catalysis. Catal Letters 88:33–38

    Article  CAS  Google Scholar 

  65. Zhang X, Hayward DO, Mingos DMP (1999) Apparent equilibrium shifts and hot-spot formation for catalytic reactions induced by microwave dielectric heating. Chem Commun 11:975–976

    Article  Google Scholar 

  66. Palma V, Barba D, Cortese M, Martino M, Renda S, Meloni E (2020) Microwaves and heterogeneous catalysis: a review on selected catalytic processes. Catalysts 10:246. https://doi.org/10.3390/catal10020246

    Article  CAS  Google Scholar 

  67. Wang LC, Zhang Y, Xu J, Diao W, Karakalos S, Liu B, Song X, Wu W, He T, Ding D (2019) Non-oxidative dehydrogenation of ethane to ethylene over ZSM-5 zeolite supported iron catalysts. Appl Catal B Environ 256:117816. https://doi.org/10.1016/j.apcatb.2019.117816

    Article  CAS  Google Scholar 

  68. Alshibane I, Laassiri S, Rico JL, Hargreaves JSJ (2018) Methane cracking over cobalt molybdenum carbides. Catal Letters 148:1643–1650. https://doi.org/10.1007/s10562-018-2378-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Gazi University Research Fund (Grant No. 06/2019-02). The author would like to thanks to Prof. Dr. Kirali Murtezaoglu and Prof. Dr. Nuray Oktar of Gazi University for their suggestions. The author also thanks to the Central Laboratory of METU for the characterization results of the synthesized materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilsad Dolunay Eslek Koyuncu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 641 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eslek Koyuncu, D.D. Investigation of the effect of microwave heated reactor on ethane dehydrogenation over KIT-6 supported catalysts. Reac Kinet Mech Cat 132, 379–399 (2021). https://doi.org/10.1007/s11144-021-01928-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-01928-7

Keywords

Navigation