Skip to main content
Log in

A novel phosphine-free and recyclable palladium organic–inorganic hybrid magnetic nanocatalyst for Heck cross-coupling reactions

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A palladium organic–inorganic hybrid magnetic nanocatalyst for the Heck-cross coupling reactions was developed. This newly synthesized phosphine-free PdMNPs catalyzed Heck-cross coupling reactions in short reaction times (20–30 min) and high to excellent yields (75–93%). The catalyst was separated simply by an external magnet and reused in 10 successive runs without significant decrease in catalytic activity. The structure of the catalyst was established by Fourier transform infrared, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, vibrating sample magnetometer and thermogravimetric analysis analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Karimi B, Enders D (2006) New N-heterocyclic carbene palladium complex/ionic liquid matrix immobilized on silica: application as recoverable catalyst for the Heck reaction. Org Lett 8:1237–1240

    Article  CAS  PubMed  Google Scholar 

  2. Prakash GKS, Krishnan HS, Jog PV, Iyer AP, Olah GA (2012) A domino approach of Heck coupling for the synthesis of β-trifluoromethylstyrenes. Org Lett 14:1146–1149

    Article  CAS  PubMed  Google Scholar 

  3. de Meijere A, Meyer Frank E (1995) Fine feathers make fine birds: the Heck reaction in modern garb. Angew Chem Int Ed 33:2379–2411

    Article  Google Scholar 

  4. Heck RF (1991) In: Trost MB (ed) Comprehensive organic synthesis. Elsevier, New York

  5. Beletskaya IP, Cheprakov AV (2000) The Heck reaction as a sharpening stone of palladium catalysis. Chem Rev 100:3009–3066

    Article  CAS  PubMed  Google Scholar 

  6. de Meijere A, Bräse S (2004) Metal-catalyzed cross-coupling reactions. Wiley-VCH, New York

    Book  Google Scholar 

  7. Pratihar JL, Pattanayak P, Patra D, Lin C-H, Chattopadhyay S (2012) Synthesis, characterization and structure of new diazoketiminato chelates of palladium(II): potential catalyst for C-C coupling reactions. Polyhedron 33:67–73

    Article  CAS  Google Scholar 

  8. Aydemir M, Durap F, Baysal A, Akba O, Gümgüm B, Özkar S, Yıldırım LT (2009) Synthesis and characterization of new bis(diphenylphosphino)aniline ligands and their complexes: X-ray crystal structure of palladium(II) and platinum(II) complexes, and application of palladium(II) complexes as pre-catalysts in Heck and Suzuki cross-coupling reactions. Polyhedron 28:2313–2320

    Article  CAS  Google Scholar 

  9. Chen X, Engle Keary M, Wang D-H, Yu J-Q (2009) Palladium(II)-catalyzed C-H activation/C–C cross-coupling reactions: versatility and practicality. Angew Chem Int Ed 48:5094–5115

    Article  CAS  Google Scholar 

  10. Barnard BC (2008) Platin Met Rev 52:38–45

    Article  CAS  Google Scholar 

  11. Röhlich C, Köhler K (2010) Macrocyclic palladium(II) complexes in C-C coupling reactions: efficient catalysis by controlled temporary release of active species. Adv Synth Catal 352:2263–2274

    Article  CAS  Google Scholar 

  12. García-Melchor M, Fuentes B, Lledós A, Casares JA, Ujaque G, Espinet P (2011) Cationic intermediates in the Pd-catalyzed Negishi coupling. Kinetic and density functional theory study of alternative transmetalation pathways in the Me–Me coupling of ZnMe2 and trans-[PdMeCl(PMePh2)2]. J Am Chem Soc 133:13519–13526

    Article  CAS  PubMed  Google Scholar 

  13. Borah BJ, Saikia K, Saikia PP, Barua NC, Dutta DK (2012) PdO-nanoparticles stabilized by tripodal phosphine based ligands and their catalytic activities on carboncarbon bond formation reactions. Catal Today 198:174–183

    Article  CAS  Google Scholar 

  14. Slagt VF, de Vries AHM, de Vries JG, Kellogg RM (2010) Practical aspects of carbon−carbon cross-coupling reactions using heteroarenes. Org Process Res Dev 14:30–47

    Article  CAS  Google Scholar 

  15. Morgan BP, Galdamez GA, Gilliard JR Jr, Smith RC (2009) Canopied trans-chelating bis(N-heterocyclic carbene) ligand: synthesis, structure and catalysis. Dalton Trans. https://doi.org/10.1039/B815739A

    Article  PubMed  Google Scholar 

  16. Bakherad M, Keivanloo A, Bahramian B, Jajarmi S (2010) Copper- and solvent-free Sonogashira coupling reactions of aryl halides with terminal alkynes catalyzed by 1-phenyl-1,2-propanedione-2-oxime thiosemi-carbazone-functionalized polystyrene resin supported Pd(II) complex under aerobic conditions. Appl Catal A 390:135–140

    Article  CAS  Google Scholar 

  17. Alizadeh A, Khodaei MM, Kordestani D, Beygzadeh M (2013) Highly efficient phosphine-free Suzuki aryl couplings mediated by an in situ generated Pd(OAc)2/metformin complex in green media. Tetrahedron Lett 54:291–294

    Article  CAS  Google Scholar 

  18. Yang Q, Wu H, Zhan H, Hou J, Gao M, Su Q, Wu S (2020) Attapulgite-anchored Pd complex catalyst: a highly active and reusable catalyst for C-C coupling reactions. React Kinet Mech Cat. https://doi.org/10.1007/s11144-019-01698-3

    Article  Google Scholar 

  19. Johansson Seechurn Carin CC, Kitching Matthew O, Colacot Thomas J, Snieckus V (2012) Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize. Angew Chem Int Ed 51:5062–5085

    Article  CAS  Google Scholar 

  20. Lu Z-L, Lindner E, Mayer HA (2002) Applications of sol–gel-processed interphase catalysts. Chem Rev 102:3543–3578

    Article  CAS  PubMed  Google Scholar 

  21. Kidwai M, Jain A, Bhardwaj S (2012) Magnetic nanoparticles catalyzed synthesis of diverse N-heterocycles. Mol Divers 16:121–128

    Article  CAS  PubMed  Google Scholar 

  22. Phan Nam TS, Gill Christopher S, Nguyen Joseph V, Zhang ZJ, Jones Christopher W (2006) Expanding the utility of one-pot multistep reaction networks through compartmentation and recovery of the catalyst. Angew Chem Int Ed 45:2209–2212

    Article  CAS  Google Scholar 

  23. Abu-Reziq R, Alper H, Wang D, Post ML (2006) Metal supported on dendronized magnetic nanoparticles: highly selective hydroformylation catalysts. J Am Chem Soc 128:5279–5282

    Article  CAS  PubMed  Google Scholar 

  24. Ma’mani L, Sheykhan M, Heydari A, Faraji M, Yamini Y (2010) Sulfonic acid supported on hydroxyapatite-encapsulated-γ-Fe2O3 nanocrystallites as a magnetically Brønsted acid for N-formylation of amines. Appl Catal A 377:64–69

    Article  CAS  Google Scholar 

  25. Teunissen W, Bol AA, Geus JW (1999) Magnetic catalyst bodies. Catal Today 48:329–336

    Article  CAS  Google Scholar 

  26. Yoon T-J, Lee W, Oh Y-S, Lee J-K (2003) Magnetic nanoparticles as a catalyst vehicle for simple and easy recycling. N J Chem 27:227–229

    Article  CAS  Google Scholar 

  27. Yoon H, Ko S, Jang J (2007) Nitrogen-doped magnetic carbon nanoparticles as catalyst supports for efficient recovery and recycling. Chem Commun 38(14):1468–1470

    Article  CAS  Google Scholar 

  28. Yang H-H, Zhang S-Q, Chen X-L, Zhuang Z-X, Xu J-G, Wang X-R (2004) Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal Chem 76:1316–1321

    Article  CAS  PubMed  Google Scholar 

  29. Lee D, Lee J, Lee H, Jin S, Hyeon T, Kim BM (2006) Filtration-free recyclable catalytic asymmetric dihydroxylation using a ligand immobilized on magnetic mesocellular mesoporous silica. Adv Synth Catal 348:41–46

    Article  CAS  Google Scholar 

  30. Zhang Y, Li Z, Sun W, Xia C (2008) A magnetically recyclable heterogeneous catalyst: cobalt nano-oxide supported on hydroxyapatite-encapsulated γ-Fe2O3 nanocrystallites for highly efficient olefin oxidation with H2O2. Catal Commun 10:237–242

    Article  CAS  Google Scholar 

  31. Deng J, Mo L-P, Zhao F-Y, Hou L-L, Yang L, Zhang Z-H (2011) Sulfonic acid supported on hydroxyapatite-encapsulated-[gamma]-Fe2O3 nanocrystallites as a magnetically separable catalyst for one-pot reductive amination of carbonyl compounds. Green Chem 13:2576–2584

    Article  CAS  Google Scholar 

  32. Liu Y-H, Deng J, Gao J-W, Zhang Z-H (2012) Triflic acid-functionalized silica-coated magnetic nanoparticles as a magnetically separable catalyst for synthesis of gem-dihydroperoxides. Adv Synth Catal 354:441–447

    Article  CAS  Google Scholar 

  33. Baleizao C, Corma A, Garcia H, Leyva A (2003) An oxime-carbapalladacycle complex covalently anchored to silica as an active and reusable heterogeneous catalyst for Suzuki cross-coupling in water. Chem Commun. https://doi.org/10.1039/B211742H

    Article  Google Scholar 

  34. Wang D, Astruc D (2014) Fast-growing field of magnetically recyclable nanocatalysts. Chem Rev 114:6949–6985

    Article  CAS  PubMed  Google Scholar 

  35. Stevens PD, Li G, Fan J, Yen M, Gao Y (2005) Recycling of homogeneous Pd catalysts using superparamagnetic nanoparticles as novel soluble supports for Suzuki, Heck, and Sonogashira cross-coupling reactions. Chem Commun. https://doi.org/10.1039/B505424A

    Article  Google Scholar 

  36. Dálaigh CÓ, Corr Serena A, Gunko Y, Connon Stephen J (2007) N-dialkylaminopyridine catalyst: excellent reactivity combined with facile catalyst recovery and recyclability. Angew Chem Int Ed 46:4329–4332

    Article  CAS  Google Scholar 

  37. Wight AP, Davis ME (2002) Design and preparation of organic–inorganic hybrid catalysts. Chem Rev 102:3589–3614

    Article  CAS  PubMed  Google Scholar 

  38. Tabatabaeian K, Zanjanchi MA, Mamaghani M, Dadashi A (2016) Diversity oriented synthesis of benzoxanthene and benzochromene libraries via one-pot, three-component reactions and their anti-proliferative activity. Res Chem Intermed 42:5049–5067

    Article  CAS  Google Scholar 

  39. Khoobi M, Ma’mani L, Rezazadeh F, Zareie Z, Foroumadi A, Ramazani A, Shafiee A (2012) One-pot synthesis of 4H-benzo[b]pyrans and dihydropyrano[c]chromenes using inorganic–organic hybrid magnetic nanocatalyst in water. J Mol Catal A 359:74–80

    Article  CAS  Google Scholar 

  40. Sheykhan M, Mohammadquli M, Heydari A (2012) A new and green synthesis of formamidines by γ-Fe2O3@SiO2-HBF4 nanoparticles as a robust and magnetically recoverable catalyst. J Mol Struct 1027:156–161

    Article  CAS  Google Scholar 

  41. Mohsenimehr M, Mamaghani M, Shirini F, Sheykhan M, Moghaddam FA (2014) One-pot synthesis of novel pyrido[2,3-d]pyrimidines using HAp-encapsulated-γ-Fe2O3 supported sulfonic acid nanocatalyst under solvent-free conditions. Chin Chem Lett 25:1387–1391

    Article  CAS  Google Scholar 

  42. Ma’mani L, Sheykhan M, Heydari A (2011) Nanosilver embedded on hydroxyapatite-encapsulated γ-Fe2O3: superparamagnetic catalyst for chemoselective oxidation of primary amines to N-monoalkylated hydroxylamines. Appl Catal A 395:34–38

    Article  CAS  Google Scholar 

  43. Sheykhan M, Ma’mani L, Ebrahimi A, Heydari A (2011) Sulfamic acid heterogenized on hydroxyapatite-encapsulated γ-Fe2O3 nanoparticles as a magnetic green interphase catalyst. J Mol Catal A 335:253–261

    Article  CAS  Google Scholar 

  44. Cullity BD (1956) Elements of X ray diffraction. Addison-Wesley Publishing Company, London

    Google Scholar 

  45. Sabu Thomas KJ, Malhotra SK, Koichi G, Sreekala MS (2013) Polymer composites, nanocomposites. Wiley-VCH, Weinheim

    Book  Google Scholar 

  46. Pastoriza-Santos I, Liz-Marzán LM (2009) N-dimethylformamide as a reaction medium for metal nanoparticle synthesis. Adv Funct Mater 19:679–688

    Article  CAS  Google Scholar 

  47. Hajipour Abdol R, Karami K, Pirisedigh A (2009) Accelerated Heck reaction using ortho-palladated complex with controlled microwave heating. Appl Organomet Chem 23:504–511

    Article  CAS  Google Scholar 

  48. Hajipour AR, Karami K, Pirisedigh A, Ruoho AE (2009) Application of dimeric orthopalladate complex of homoveratrylamine as an efficient catalyst in the Heck cross-coupling reaction. J Organomet Chem 694:2548–2554

    Article  CAS  Google Scholar 

  49. Ma X, Zhou Y, Zhang J, Zhu A, Jiang T, Han B (2008) Solvent-free Heck reaction catalyzed by a recyclable Pd catalyst supported on SBA-15 via an ionic liquid. Green Chem 10:59–66

    Article  CAS  Google Scholar 

  50. Wu S, Ma H, Jia X, Zhong Y, Lei Z (2011) Biopolymer–metal complex wool–Pd as a highly active heterogeneous catalyst for Heck reaction in aqueous media. Tetrahedron 67:250–256

    Article  CAS  Google Scholar 

  51. Firouzabadi H, Iranpoor N, Ghaderi A (2011) Solvent-free Mizoroki-Heck reaction catalyzed by palladium nano-particles deposited on gelatin as the reductant, ligand and the non-toxic and degradable natural product support. J Mol Catal A 347:38–45

    Article  CAS  Google Scholar 

  52. Xu H-J, Zhao Y-Q, Zhou X-F (2011) Palladium-catalyzed Heck reaction of aryl chlorides under mild conditions promoted by organic ionic bases. J Org Chem 76:8036–8041

    Article  CAS  PubMed  Google Scholar 

  53. Meng L, Liu C, Zhang W, Zhou C, Lei A (2014) Palladium catalysed β-selective oxidative Heck reaction of an electron-rich olefin. Chem Commun 50:1110–1112

    Article  CAS  Google Scholar 

  54. Polshettiwar V, Hesemann P, Moreau JJE (2007) Palladium containing nanostructured silica functionalized with pyridine sites: a versatile heterogeneous catalyst for Heck, Sonogashira, and cyanation reactions. Tetrahedron 63:6784–6790

    Article  CAS  Google Scholar 

  55. Petrucci C, Cappelletti M, Piermatti O, Nocchetti M, Pica M, Pizzo F, Vaccaro L (2015) Immobilized palladium nanoparticles on potassium zirconium phosphate as an efficient recoverable heterogeneous catalyst for a clean Heck reaction in flow. J Mol Catal A 401:27–34

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manouchehr Mamaghani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 672 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barazandehdoust, M., Mamaghani, M. & Kefayati, H. A novel phosphine-free and recyclable palladium organic–inorganic hybrid magnetic nanocatalyst for Heck cross-coupling reactions. Reac Kinet Mech Cat 129, 1007–1026 (2020). https://doi.org/10.1007/s11144-020-01744-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01744-5

Keywords

Navigation