Skip to main content
Log in

Chemical kinetics, thermodynamics and inactivation kinetics of dextransucrase activity by ultrasound treatment

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this work, the impact of ultrasound on dextransucrase activity was investigated, and a biphasic model was introduced to investigate the inactivation kinetics of the dextransucrase catalytic reaction. In addition, a chemical kinetic model, the Michaelis–Menten equation, Eyring transition state theory and the Arrhenius equation were applied. Short periods of exposure to low-intensity ultrasound significantly increased the activity of dextransucrase. The maximum activity was 1.25 ± 0.01 u/mL at an ultrasound intensity of 1.8 W/cm3 for 3 min, which was 27.6% higher than the activity of the untreated enzyme (0.98 ± 0.038 U/mL). In addition, after the ultrasound treatment, the kinetic model of the dextransucrase catalytic reaction was fitted to a first-order kinetic model at low sucrose concentrations. At low sucrose concentrations, the Ea, ΔH, ΔS and ΔG of ultrasound-treated dextransucrase were reduced by 33.7, 35.7, 28.8 and 0.38%, respectively. Furthermore, compared with the parameters of the untreated sample, the value of Vmax the treated sample increased, and Km decreased. The thermal inactivation model of the dextransucrase catalytic reaction in a shaker was fitted to a biphasic model, and the percentage of the thermally stable fraction of ultrasound-treated dextransucrase was increased, while the rate of deactivation was decreased. Moreover, the degree of thermal inactivation was inversely proportional to the dextransucrase concentration. The fluorescence spectra showed a decrease in the amount of tryptophan on the surface of dextransucrase treated with ultrasound. In conclusion, short-term treatment with low ultrasound intensity increases the activity, thermal stability and reaction rate of dextransucrase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lata K, Sharma M, Patel SN, Sangwan RS, Singh SP (2018) Bioprocess Biosyst Eng 41(8):1121–1131

    Article  CAS  PubMed  Google Scholar 

  2. Côté GL, Skory CD (2016) Carbohydr Res 428:57–61

    Article  CAS  PubMed  Google Scholar 

  3. Shi Q, Hou Y, Juvonen M, Tuomainen P, Kajala I, Shukla S, Goyal A, Maaheimo H, Katina K, Tenkanen M (2016) J Agric Food Chem 64(16):3276–3286

    Article  CAS  PubMed  Google Scholar 

  4. Sorndech W, Nakorn KN, Tongta S, Blennow A (2018) LWT 95:135–142

    Article  CAS  Google Scholar 

  5. Zhang Y, Guo L, Xu D, Li D, Yang N, Chen F, Jin Z, Xu X (2018) Food Chem 256:373

    Article  CAS  PubMed  Google Scholar 

  6. Wang DL, Yan LF, Ma XB, Wang WJ, Zou MM, Zhong JJ, Ding T, Ye XQ, Liu DH (2018) Int J Biol Macromol 119:453–461

    Article  CAS  PubMed  Google Scholar 

  7. Li MQ, Zhang HB, Li Y, Hu XQ, Yang JW (2017) Int J Biol Macromol 107(Pt B):1641–1649

    PubMed  Google Scholar 

  8. Chtourou M, Lahyani A, Trabelsi M (2018) Reac Kinet Mech Cat 126:237–247

    Article  CAS  Google Scholar 

  9. Hou FR, Ma XB, Fan LH, Wang DL, Wang WJ, Ding T, Ye XQ, Liu DH (2019) Food Chem 285:355–362

    Article  CAS  PubMed  Google Scholar 

  10. Zhang ZH, Wang LH, Zeng XA, Han Z, Brennan CS (2019) Int J Food Sci Technol 54(1):1–13

    Article  CAS  Google Scholar 

  11. Subhedar PB, Gogate PR (2014) J Mol Catal B 101:108–114

    Article  CAS  Google Scholar 

  12. Dalagnol LMG, Silveira VCC, Silva HBD, Manfroi V, Rodrigues RC (2017) Process Biochem 61:S1359511317309480

    Article  CAS  Google Scholar 

  13. Frampton JP, Lai D, Lounds M, Chung K, Kim J, Mansfield JF, Takayama S (2015) Adv Healthcare Mater 4(2):313–319

    Article  CAS  Google Scholar 

  14. Hou DZ, Pu YY, Zou QS, Chen HL, Yu Y, Huang SX, Chen S (2018) Sugar Technol 20(1):60–68

    Article  CAS  Google Scholar 

  15. Yamaner CI, Sezen IY, Tanriseven A (2010) Food Sci Biotechnol 19(1):175–184

    Article  CAS  Google Scholar 

  16. Silvestri MG, Dills CE (1989) J Chem Educ 66(66):690

    Article  CAS  Google Scholar 

  17. Knesebeck AM, Pacheco Ortiz RW, Cardozo-Filho L, Zanoelo EF (2018) Reac Kinet Mech Cat 125(2):521–534

    Article  CAS  Google Scholar 

  18. Liing AC, Lund DB (2010) J Food Sci 43(4):1307–1310

    Article  Google Scholar 

  19. Lente G (2015) Deterministic kinetics in chemistry and systems biology: the dynamics of complex reaction networks. Springer, New York

    Book  Google Scholar 

  20. Szabó OE, Csiszár E (2013) Carbohydr Polym 98(2):1483–1489

    Article  CAS  PubMed  Google Scholar 

  21. Bashari M, Eibaid A, Wang J, Tian Y, Xu X, Jin Z (2013) Ultrason Sonochem 20(1):155–161

    Article  CAS  PubMed  Google Scholar 

  22. Terefe NS, Buckow R, Versteeg C (2015) Crit Rev Food Sci Nutr 55(2):147–158

    Article  CAS  PubMed  Google Scholar 

  23. Ma XB, Wang WJ, Zou MM, Ding T, Ye XQ, Liu DH (2015) RSC Adv 5(130):107591–107600

    Article  CAS  Google Scholar 

  24. Jadhav SH, Gogate PR (2014) Ind Eng Chem Res 53(4):1377–1385

    Article  CAS  Google Scholar 

  25. Pu Y, Zou Q, Hou D, Zhang Y, Chen S (2017) Carbohydr Polym 156:71–76

    Article  CAS  PubMed  Google Scholar 

  26. Lente G (2018) Curr Opin Chem Eng 21:76–83

    Article  Google Scholar 

  27. Zhu LJ, Zhu LH, Murtaza A, Liu Y, Liu SY, Li JJ, Iqbal A, Xu XY, Pan SY, Hu WF (2019) Molecules 24(10):1922

    Article  CAS  PubMed Central  Google Scholar 

  28. de Souza SA, Augusto PED (2019) Júnior BRDCL, Nogueira CA, Vieira ÉNR, de Barros FAR, Stringheta PC, Ramos AM. LWT 107:164–170

    Article  CAS  Google Scholar 

  29. Ma H, Huang L, Jia J, He R, Zhu W (2011) Ultrason Sonochem 18(1):419–424

    Article  CAS  PubMed  Google Scholar 

  30. Jian J, Haile M, Wenjuan Q, Kai W, Cunshan Z, Ronghai H, Lin L, John O (2015) Ultrason Sonochem 27:46–53

    Article  CAS  Google Scholar 

  31. Wenjuan Q, Haile M, Bin L, Ronghai H, Zhongli P, Ernest Ekow A (2013) Ultrason Sonochem 20(6):1408–1413

    Article  CAS  Google Scholar 

  32. Marguerite D, Magali RS, Rene MW, Michel V, Pierre FM (1997) Appl Biochem Biotechnol 62(1):47–59

    Article  Google Scholar 

  33. Neely BW (1959) J Am Chem Soc 81(16):4416–4418

    Article  CAS  Google Scholar 

  34. Imai M, Ikari K, Suzuki I (2004) Biochem Eng J 17(2):79–83

    Article  CAS  Google Scholar 

  35. Li H, Li S, Peng J, Srinivasakannan C, Zhang L, Yin S (2018) Ultrason Sonochem 40(Pt A):1021–1030

    Article  CAS  PubMed  Google Scholar 

  36. Song W, De La Cruz AA, Rein K, O'Shea KE (2006) Environ Sci Technol 40(12):3941–3946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mawson R, Gamage M, Terefe NS, Kai K (2011) Ultrasound in enzyme activation and inactivation. Springer, New York

    Book  Google Scholar 

  38. Ebert KH, Patat F (1963) Zeitschrift für Naturforschung B 17(11):738–748

    Article  Google Scholar 

  39. Cybulska J, Pakula R (1963) Exp Med Microbiol 15:285–296

    CAS  Google Scholar 

  40. Mooser G, Shur D, Lyou M, Watanabe C (1985) J Biol Chem 260(11):6907–6915

    CAS  PubMed  Google Scholar 

  41. Shalini GR, Shivhare US, Basu S (2008) J Food Eng 85:147–153

    Article  CAS  Google Scholar 

  42. Ladero M, Santos A, García-Ochoa F (2006) Enzyme Microb Technol 38(1):1–9

    Article  CAS  Google Scholar 

  43. Lencki RW, Arul J, Neufeld RJ (2010) Biotechnol Bioeng 40(11):1427–1434

    Article  Google Scholar 

  44. Bhagia S, Wyman CE, Kumar R (2019) Biotechnol Biofuels 12(1):1–15

    Article  Google Scholar 

  45. Donaldson TL, Boonstra EF, Hammond JM (1980) J Colloid Interface Sci 74(2):441–450

    Article  CAS  Google Scholar 

  46. Miao J, Liao W, Kang M, Jia Y, Wang Q, Duan S, Xiao S, Cao Y, Ji H (2018) Food Funct 9(12):6578–6586

    Article  Google Scholar 

  47. Sluzky V, Klibanov AM, Langer R (2010) Biotechnol Bioeng 40(8):895–903

    Article  Google Scholar 

  48. Lencki RW, Tecante A, Choplin L (2010) Biotechnol Bioeng 42(9):1061–1067

    Article  Google Scholar 

  49. Ortega N, Diego SD, Perez-Mateos M, Busto MD (2004) Food Chem 88(2):209–217

    Article  CAS  Google Scholar 

  50. Lecker DN, Khan A (1996) Biotechnol Progr 12(5):713–717

    Article  CAS  Google Scholar 

  51. Casey EJ, Laidler KJ (1951) J Am Chem Soc 73(4):1455–1457

    Article  CAS  Google Scholar 

  52. Miller WA (1985) Purification, surfactant stabilization, molecular weight studies, and divalent metal ion kinetics of dextransucrase from Leuconostoc mesenteroides NRRL B-512F. Retrospective Theses and Dissertations. https://doi.org/10.31274/rtd-180813-8707

  53. Yi J, Jiang B, Zhang Z, Liao X, Zhang Y, Hu X (2012) J Agric Food Chem 60(2):593–599

    Article  CAS  PubMed  Google Scholar 

  54. Zou Y, Yang H, Zhang M, Zhang X, Xu W, Wang D (2019) Asian-Australas J Anim Sci 32:1611

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors express their thanks to the Engineering Center for Sugar and Comprehensive Utilization. This work was supported by financial aid from the National Natural Science Foundation of China (Grant No. 21768001).

Funding

This study was funded by the National Natural Science Foundation of China (Grant No. 21768001).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, formal analysis, methodology, software and writing—original draft were performed by Weibing Lan. Data curation, project administration, resources, writing—review & editing were performed by Shan Chen. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shan Chen.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2649 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, W., Chen, S. Chemical kinetics, thermodynamics and inactivation kinetics of dextransucrase activity by ultrasound treatment. Reac Kinet Mech Cat 129, 843–864 (2020). https://doi.org/10.1007/s11144-020-01728-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01728-5

Keywords

Navigation