Skip to main content
Log in

An integrated bio-process for production of functional biomolecules utilizing raw and by-products from dairy and sugarcane industries

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The study investigated an integrated bioprocessing of raw and by-products from sugarcane and dairy industries for production of non-digestible prebiotic and functional ingredients. The low-priced feedstock, whey, molasses, table sugar, jaggery, etc., were subjected to transglucosylation reactions catalyzed by dextransucrase from Leuconostoc mesenteroides MTCC 10508. HPLC analysis approximated production of about 11–14 g L−1 trisaccharide i.e. 2-α-d-glucopyranosyl-lactose (4-galactosyl-kojibiose) from the feedstock prepared from table sugar, jaggery, cane molasses and liquid whey, containing about 30 g L−1 sucrose and lactose each. The trisaccharide was hydrolysed into the prebiotic disaccharide, kojibiose, by employing recombinant β-galactosidase from Escherichia coli. The enzyme β-galactosidase achieved about 90% conversion of 2-α-d-glucopyranosyl-lactose into kojibiose. The d-fructose generated by catalytic reactions of dextransucrase was targeted for catalytic transformation into rare sugar, d-allulose (or d-psicose), by treating the samples with Smt3-d-psicose 3-epimerase. The catalytic reactions resulted in the conversion of ~ 25% d-fructose to d-allulose. These bioactive compounds are known to exert a plethora of benefits to human health, and therefore, are preferred ingredients for making functional foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Singh A, Lal UR, Mukhtar HM, Singh PS, Shah G, Dhawan RK (2015) Phytochemical profile of sugarcane and its potential health aspects. Pharmacogn Rev 9:45–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen ZY, Jiao R, Ma KY (2008) Cholesterol-lowering nutraceuticals and functional foods. J Agric Food Chem 56:8761–8773

    Article  CAS  PubMed  Google Scholar 

  3. Garcia JM, Narvaez PC, Heredia FJ, Orjuela A, Osorio C (2017) Physicochemical and sensory (aroma and colour) characterisation of a non-centrifugal cane sugar (“panela”) beverage. Food Chem 228:7–13

    Article  CAS  PubMed  Google Scholar 

  4. Liu YP, Zheng P, Sun ZH, Ni Y, Dong JJ, Zhu LL (2008) Economical succinic acid production from cane molasses by Actinobacillus succinogenes. Bioresour Technol 99:1736–1742

    Article  CAS  PubMed  Google Scholar 

  5. Hirabayashi K, Kondo N, Toyota H, Hayashi S (2017) Production of the functional trisaccharide 1-kestose from cane sugar molasses using Aspergillus japonicus β-fructofuranosidase. Curr Microbiol 74:145–148

    Article  CAS  PubMed  Google Scholar 

  6. Kaur P, Satyanarayana T (2005) Production of cell-bound phytase by Pichia anomala in an economical cane molasses medium: optimization using statistical tools. Process Biochem 40:3095–3102

    Article  CAS  Google Scholar 

  7. Mironczuk AM, Rakicka M, Biegalska A, Rymowicz W, Dobrowolski A (2015) A two-stage fermentation process of erythritol production by yeast Y. lipolytica from molasses and glycerol. Bioresour Technol 198:445–455

    Article  CAS  PubMed  Google Scholar 

  8. Xia J, Xu J, Hu L, Liu X (2016) Enhanced poly(l-malic acid) production from pretreated cane molasses by Aureobasidium pullulans in fed-batch fermentation. Prep Biochem Biotechnol 46:798–802

    Article  CAS  PubMed  Google Scholar 

  9. Dai JY, Zhao P, Cheng XL, Xiu ZL (2015) Enhanced production of 2,3-butanediol from sugarcane molasses. Appl Biochem Biotechnol 175:3014–3024

    Article  CAS  PubMed  Google Scholar 

  10. Xu K, Xu P (2014) Efficient production of l-lactic acid using co-feeding strategy based on cane molasses/glucose carbon sources. Bioresour Technol 153:23–29

    Article  CAS  PubMed  Google Scholar 

  11. Ikram-Ul H, Ali S, Qadeer MA, Iqbal J (2004) Citric acid production by selected mutants of Aspergillus niger from cane molasses. Bioresour Technol 93:125 – 30

    Article  CAS  PubMed  Google Scholar 

  12. Zhang YY, Bu YF, Liu JZ (2015) Production of l-ornithine from sucrose and molasses by recombinant Corynebacterium glutamicum. Folia Microbiol (Praha) 60:393–398

    Article  CAS  Google Scholar 

  13. Yan D, Lu Y, Chen YF, Wu Q (2011) Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Bioresour Technol 102:6487–6493

    Article  CAS  PubMed  Google Scholar 

  14. Gong Y, Liu J, Jiang M, Liang Z, Jin H, Hu X, Wan X, Hu C (2015) Improvement of omega-3 docosahexaenoic acid production by marine Crypthecodinium cohnii dinoflagellate using rapeseed meal hydrolysate and waste molasses as feedstock. PLoS One 10:e0125368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu J, Huang J, Jiang Y, Chen F (2012) Molasses-based growth and production of oil and astaxanthin by Chlorella zofingiensis. Bioresour Technol 107:393–398

    Article  CAS  PubMed  Google Scholar 

  16. Wisuthiphaet N, Napathorn SC (2016) Optimisation of the use of products from the cane sugar industry for poly (3-hydroxybutyrate) production by Azohydromonas lata DSM 1123 in fed-batch cultivation. Process Biochem 51:352–361

    Article  CAS  Google Scholar 

  17. Xia J, Xu Z, Xu H, Liang J, Li S, Feng X (2014) Economical production of poly(epsilon-l-lysine) and poly(l-diaminopropionic acid) using cane molasses and hydrolysate of streptomyces cells by Streptomyces albulus PD-1. Bioresour Technol 164:241–247

    Article  CAS  PubMed  Google Scholar 

  18. Sadeghiyan-Rizi T, Fooladi J, Momhed Heravi M, Sadrai S (2014) Optimization of l-tryptophan biosynthesis from l-serine of processed iranian beet and cane molasses and indole by induced Escherichia coli ATCC 11303 cells. Jundishapur J Microbiol 7:e10589

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sharma M, Patel SN, Lata K, Singh U, Krishania M, Sangwan RS, Singh SP (2016) A novel approach of integrated bioprocessing of cane molasses for production of prebiotic and functional bioproducts. Bioresour Technol 219:311–318

    Article  CAS  PubMed  Google Scholar 

  20. Patel SN, Sharma M, Lata K, Singh U, Kumar V, Sangwan RS, Singh SP (2016) Improved operational stability of d-psicose 3-epimerase by a novel protein engineering strategy, and d-psicose production from fruit and vegetable residues. Bioresour Technol 216:121–127

    Article  CAS  PubMed  Google Scholar 

  21. Cazetta ML, Celligoi MA, Buzato JB, Scarmino IS (2007) Fermentation of molasses by Zymomonas mobilis: effects of temperature and sugar concentration on ethanol production. Bioresour Technol 98:2824–2828

    Article  CAS  PubMed  Google Scholar 

  22. Broderick GA, Radloff WJ (2004) Effect of molasses supplementation on the production of lactating dairy cows fed diets based on alfalfa and corn silage. J Dairy Sci 87:2997–3009

    Article  CAS  PubMed  Google Scholar 

  23. Panesar PS, Kennedy JF (2011) Biotechnological approaches for the value addition of whey. Crit Rev Biotechnol 32:327–348

    Article  CAS  PubMed  Google Scholar 

  24. Panesar PS, Kennedy JF, Knill CJ, Kosseva MR (2007) Applicability of pectate-entrapped Lactobacillus casei cells for l(+) lactic acid production from whey. Appl Microbiol Biotechnol 74:35–42

    Article  CAS  PubMed  Google Scholar 

  25. Marangoni C, Furigo A, Glaucia A (2002) Production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Ralstonia eutropha in whey and inverted sugar with propionic acid feeding. Process Biochem 38:137–141

    Article  CAS  Google Scholar 

  26. Corzo-Martinez M, Luscher A, de Las Rivas B, Munoz R, Moreno FJ (2015) Valorization of cheese and tofu whey through enzymatic synthesis of lactosucrose. PLoS One 10:e0139035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qureshi N, Friedl A, Maddox IS (2014) Butanol production from concentrated lactose/whey permeate: use of pervaporation membrane to recover and concentrate product. Appl Microbiol Biotechnol 98:9859–9867

    Article  CAS  PubMed  Google Scholar 

  28. Alonso S, Rendueles M, Diaz M (2013) Feeding strategies for enhanced lactobionic acid production from whey by Pseudomonas taetrolens. Bioresour Technol 134:134–142

    Article  CAS  PubMed  Google Scholar 

  29. Foda MI, Lopez-Leiva M (2000) Continuous production of oligosaccharides from whey using a membrane reactor. Process Biochem 35:581–587

    Article  CAS  Google Scholar 

  30. Silveira ST, Martinez-Maqueda D, Recio I, Hernandez-Ledesma B (2013) Dipeptidyl peptidase-IV inhibitory peptides generated by tryptic hydrolysis of a whey protein concentrate rich in β-lactoglobulin. Food Chem 141:1072–1077

    Article  CAS  PubMed  Google Scholar 

  31. Smithers GW (2008) Whey and whey proteins—from ‘gutter-to-gold’. Int Dairy J 18:695–704

    Article  CAS  Google Scholar 

  32. Rastall RA, Gibson GR (2015) Recent developments in prebiotics to selectively impact beneficial microbes and promote intestinal health. Curr Opin Biotechnol 32:42–46

    Article  CAS  PubMed  Google Scholar 

  33. Slavin J (2013) Fiber and prebiotics: mechanisms and health benefits. Nutrients 5:1417–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lehmann S, Hiller J, van Bergenhenegouwen J, Knippels LMJ, Garssen J, Traidl-Hoffmann C (2015) In vitro evidence for immune-modulatory properties of non-digestible oligosaccharides: direct effect on human monocyte derived dendritic cells. PLoS One 10:e0132304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mussatto SI, Mancilha IM (2007) Non-digestible oligosaccharides: a review. Carbohyd polym 68:587–597

    Article  CAS  Google Scholar 

  36. Nauta AJ, Garssen J (2013) Evidence-based benefits of specific mixtures of non-digestible oligosaccharides on the immune system. Carbohyd polym 93:263–265

    Article  CAS  Google Scholar 

  37. Van Loo J, Cummings J, Delzenne N, Englyst H, Franck A, Hopkins M, Kok N, Macfarlane G, Newton D, Quigley M (1999) Functional food properties of non-digestible oligosaccharides: a consensus report from the ENDO project (DGXII AIRII-CT94-1095). Br J Nutr 8:121–132

    Article  Google Scholar 

  38. Laparra JM, Diez-Municio M, Javier Moreno FHerrero M (2015) Kojibiose ameliorates arachidic acid-induced metabolic alterations in hyperglycaemic rats. Br J Nutr 114:1395–1402

    Article  CAS  Google Scholar 

  39. Laparra JM, Diez-Municio M, Herrero M, Moreno FJ (2014) Structural differences of prebiotic oligosaccharides influence their capability to enhance iron absorption in deficient rats. Food Funct 5:2430–2437

    Article  CAS  PubMed  Google Scholar 

  40. Lee BH, Rose DR, Lin AH, Quezada-Calvillo R, Nichols BL, Hamaker BR (2016) Contribution of the individual small intestinal α-glucosidases to digestion of unusual α-linked glycemic disaccharides. J Agric Food Chem 64:6487–6494

    Article  CAS  PubMed  Google Scholar 

  41. Diez-Municio M, Montilla A, Jimeno ML, Corzo A, Olano N, Moreno FJ (2012) Synthesis and characterization of a potential prebiotic trisaccharide from cheese whey permeate and sucrose by Leuconostoc mesenteroides dextransucrase. J Agric Food Chem 60:1945–1953

    Article  CAS  PubMed  Google Scholar 

  42. Diez-Municio M, Montilla A, Moreno FJ, Herrero M (2014) A sustainable biotechnological process for the efficient synthesis of kojibiose. Green Chem 16:2219–2226

    Article  CAS  Google Scholar 

  43. Purama RK, Goyal A (2008) Purified dextransucrase from Leuconostoc mesenteroides NRRL B640 exists as single homogeneous protein: analysis by nondenaturing native PAGE. Internet J Microbiol 6:1

    Google Scholar 

  44. Liu Z, Zhao C, Deng Y, Huang Y, Liu B (2015) Characterization of a thermostable recombinant β-galactosidase from a thermophilic anaerobic bacterial consortium YTY-70. Biotechnol Biotechnol Equip 29(3):547554

    Google Scholar 

  45. Naessens M, Cerdobbel A, Soetaert W, Vandamme EJ (2005) Leuconostoc dextransucrase and dextran: production, properties and applications. J Chem Technol Biotech 80:845–860

    Article  CAS  Google Scholar 

  46. Smith TJ, Foegeding EA, Drake MA (2016) Flavor and functional characteristics of whey protein isolates from different whey sources. J Food Sci 4:849–857

    Article  CAS  Google Scholar 

  47. Rahiman F, Pool EJ (2016) The effect of sugar cane molasses on the immune and male reproductive systems using in vitro and in vivo methods. Iran J Basic Med Sci 19:1125

    PubMed  PubMed Central  Google Scholar 

  48. Sharma M, Patel SN, Sangwan RS, Singh SP (2017) Biotransformation of banana pseudostem extract into a functional juice containing value added biomolecules of potential health benefits. Indian J Exp Biol 55:453–462

    Google Scholar 

  49. Vedamuthu ER (1994) The dairy Leuconostoc: use in dairy products. J Dairy Sci 77:2725–2737

    Article  Google Scholar 

  50. Ogier JC, Casalta E, Farrokh C, Saihi A (2008) Safety assessment of dairy microorganisms: the Leuconostoc genus. Int J Food Microbiol 126:286–290

    Article  CAS  PubMed  Google Scholar 

  51. Shah HS, Patel CM, Parikh SC (2013) Production of invertase from bacteria by using waste jaggery. Microbes 3:19–23

    CAS  Google Scholar 

  52. Song Y, Nguyen QA, Wi SG, Yang J, Bae HJ (2017) Strategy for dual production of bioethanol and d-psicose as value-added products from cruciferous vegetable residue. Bioresour Technol 223:34–39

    Article  CAS  PubMed  Google Scholar 

  53. Stahel P, Kim JJ, Xiao C, Cant JP (2017) Of the milk sugars, galactose, but not prebiotic galacto-oligosaccharide, improves insulin sensitivity in male Sprague-Dawley rats. PLoS One 12:e0172260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. He W, Mu W, Jiang B, Yan X, Zhang T (2016) Food-grade expression of d-psicose 3-epimerase with tandem repeat genes in Bacillus subtilis. J Agric Food Chem 64:5701–5707

    Article  CAS  PubMed  Google Scholar 

  55. Patel SN, Singh V, Sharma M, Sangwan RS, Singhal NK, Singh SP (2018) Development of a thermo-stable and recyclable magnetic nanobiocatalyst for bioprocessing of fruit processing residues and d-allulose synthesis. Bioresour Technol 247:633

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Biotechnology (DBT), Government of India for facilitating the present work at Center of Innovative and Applied Bioprocessing (CIAB), Mohali, India. KL acknowledges Science and Engineering Research Board (SERB) for providing N-PDF fellowship (PDF/2016/000408). SPS acknowledges ECR/2016/001228 grant. The thematic disclosures herein are covered in Indian patent file no. 201711006155.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhir P. Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 350 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lata, K., Sharma, M., Patel, S.N. et al. An integrated bio-process for production of functional biomolecules utilizing raw and by-products from dairy and sugarcane industries. Bioprocess Biosyst Eng 41, 1121–1131 (2018). https://doi.org/10.1007/s00449-018-1941-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-1941-0

Keywords

Navigation