Skip to main content
Log in

Exceptional catalytic performance of Au–Pt/γ-Al2O3 in naphtha reforming at very low Au dosing levels

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The catalytic behavior of Au–Pt bimetallic nanoparticles supported on γ-Al2O3 for the reforming reaction of a real desulfurized medium naphtha feed has been investigated. Composite catalysts containing 0.7 wt% metal(s) with Au/Pt weight ratios of 0:100, 1:99, 5:95, and 50:50 have been studied. XPS analysis showed that the ratio of 1:99 results in a distinct positive character of Pt in the Au–Pt nanoalloy. We show for the first time that through colorimetric analysis that the catalyst synthesized with the Au/Pt ratio of 1:99 exhibits clear surface plasmon resonance effects under visible light at 570 nm, peculiar to the electronic configuration supported by the XPS analysis. Naphtha reforming catalytic tests were performed in a WHSV range of 2–6 h−1, at 485 °C. The pressure was 5 bar, typical for continuous catalytic reforming processes. The Au/Pt ratio of 1:99 resulted in a distinct performance, i.e. maximum naphthenes conversion, maximum aromatics production and least production of benzene and hydrocarbons with a carbon number equal or less than 5. This was attributed to the formation of near-surface Au–Pt alloy with an Au mono-sublayer in the presence of H2 during the reaction. The optimal catalyst exceptionally favors dehydrogenation/dehydrogenation over hydrogenolysis reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alumina-platinum-halogen catalyst and preparation thereof (1949) Google Patents

  2. Antos GJ, Aitani AM (2004) Catalytic naphtha reforming, revised and expanded. CRC Press, Boca Raton

    Book  Google Scholar 

  3. Kluksdahl HE (1968) Reforming a sulfur-free naphtha with a platinum-rhenium catalyst. Google Patents

  4. Borgna A, Garetto T, Apesteguıa C, Moraweck B (1999) Formation of bimetallic alloys in naphtha reforming Pt–Ge/Al2O3 catalysts: an EXAFS study. Appl Catal A 182(1):189–197

    Article  CAS  Google Scholar 

  5. Baghalha M, Mohammadi M, Ghorbanpour A (2010) Coke deposition mechanism on the pores of a commercial Pt–Re/γ-Al2O3 naphtha reforming catalyst. Fuel Process Technol 91(7):714–722

    Article  CAS  Google Scholar 

  6. González-Marcos M, Inarra B, Guil J, Gutierrez-Ortiz M (2005) Development of an industrial characterisation method for naphtha reforming bimetallic Pt-Sn/Al2O3 catalysts through n-heptane reforming test reactions. Catal Today 107:685–692

    Article  Google Scholar 

  7. Boutzeloit M, Benitez VM, Mazzieri VA, Especel C, Epron F, Vera CR, Pieck CL, Marécot P (2006) Effect of the method of addition of Ge on the catalytic properties of Pt–Re/Al2O3 and Pt–Ir/Al2O3 naphtha reforming catalysts. Catal Commun 7(9):627–632

    Article  CAS  Google Scholar 

  8. Pieck C, Sad M, Parera J (1996) Chlorination of Pt–Re/Al2O3 during naphtha reforming. J Chem Technol Biotechnol 67(1):61–66

    Article  CAS  Google Scholar 

  9. Mazzieri VA, Pieck CL, Vera CR, Yori JC, Grau JM (2009) Effect of Ge content on the metal and acid properties of Pt-Re-Ge/Al2O3-Cl catalysts for naphtha reforming. Appl Catal A 353(1):93–100

    Article  CAS  Google Scholar 

  10. Benitez V, Boutzeloit M, Mazzieri VA, Especel C, Epron F, Vera CR, Marécot P, Pieck CL (2007) Preparation of trimetallic Pt–Re–Ge/Al2O3 and Pt–Ir–Ge/Al2O3 naphtha reforming catalysts by surface redox reaction. Appl Catal A 319:210–217

    Article  CAS  Google Scholar 

  11. D’Ippolito SA, Vera CR, Epron F, Especel C, Marécot P, Pieck CL (2008) Naphtha reforming Pt-Re-Ge/γ-Al2O3 catalysts prepared by catalytic reduction: influence of the pH of the Ge addition step. Catal Today 133:13–19

    Article  Google Scholar 

  12. Borgna A, Garetto T, Apesteguıa C (2000) Simultaneous deactivation by coke and sulfur of bimetallic Pt–Re (Ge, Sn)/Al2O3 catalysts for n-hexane reforming. Appl Catal A 197(1):11–21

    Article  CAS  Google Scholar 

  13. Pieck CL, Vera CR, Parera JM, Giménez GN, Serra LR, Carvalho LS, Rangel MC (2005) Metal dispersion and catalytic activity of trimetallic Pt-Re-Sn/Al2O3 naphtha reforming catalysts. Catal Today 107:637–642

    Article  Google Scholar 

  14. Mazzieri VA, Grau JM, Vera CR, Yori JC, Parera JM, Pieck CL (2005) Role of Sn in Pt–Re–Sn/Al2O3–Cl catalysts for naphtha reforming. Catal Today 107:643–650

    Article  Google Scholar 

  15. Mazzieri V, Grau J, Vera C, Yori J, Parera J, Pieck C (2005) Pt-Re-Sn/Al2O3 trimetallic catalysts for naphtha reforming processes without presulfiding step. Appl Catal A 296(2):216–221

    Article  CAS  Google Scholar 

  16. Epron F, Carnevillier C, Marécot P (2005) Catalytic properties in n-heptane reforming of Pt–Sn and Pt–Ir–Sn/Al2O3 catalysts prepared by surface redox reaction. Appl Catal A 295(2):157–169

    Article  CAS  Google Scholar 

  17. Sharifi N, Falamaki C, Ahangari MG (2019) Alkane cyclization: a DFT study on the effect of chlorinated γ-alumina. Russ J Phys Chem A 93(1):18–22

    Article  CAS  Google Scholar 

  18. Fürcht Á, Tungler A, Szabó S, Schay Z, Vida L, Gresits I (2002) n-Octane reforming over modified catalysts: II. The role of Au, Ir and Pd. Appl Catal A 231(1):151–157. https://doi.org/10.1016/S0926-860X(02)00048-0

    Article  Google Scholar 

  19. Hu Y, Zhang H, Wu P, Zhang H, Zhou B, Cai C (2011) Bimetallic Pt–Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation. Phys Chem Chem Phys 13(9):4083–4094

    Article  CAS  Google Scholar 

  20. Monyanon S, Pongstabodee S, Luengnaruemitchai A (2006) Catalytic activity of Pt–Au/CeO2 catalyst for the preferential oxidation of CO in H2-rich stream. J Power Sources 163(1):547–554. https://doi.org/10.1016/j.jpowsour.2006.09.044

    Article  CAS  Google Scholar 

  21. Redina EA, Kirichenko OA, Greish AA, Kucherov AV, Tkachenko OP, Kapustin GI, Mishin IV, Kustov LM (2015) Preparation of bimetallic gold catalysts by redox reaction on oxide-supported metals for green chemistry applications. Catal Today 246:216–231. https://doi.org/10.1016/j.cattod.2014.12.018

    Article  CAS  Google Scholar 

  22. Contreras-Andrade I, Vázquez-Zavala A, Viveros T (2009) Influence of the synthesis method on the catalytic behavior of Pt and PtSn/Al2O3 reforming catalyst. Energy Fuels 23(8):3835–3841

    Article  CAS  Google Scholar 

  23. Schwank J (1985) Gold in bimetallic catalysts. Gold Bull 18(1):2–10

    Article  CAS  Google Scholar 

  24. Cappellazzo O, Cao G, Messina G, Morbidelli M (1991) Kinetics of shape-selective xylene isomerization over a ZSM-5 catalyst. Ind Eng Chem Res 30(10):2280–2287

    Article  CAS  Google Scholar 

  25. Bouwman R, Sachtler W (1970) Photoelectric determination of the work function of gold-platinum alloys. J Catal 19(2):127–139

    Article  CAS  Google Scholar 

  26. Langhammer C, Yuan Z, Zorić I, Kasemo B (2006) Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett 6(4):833–838

    Article  CAS  Google Scholar 

  27. Greeley J, Mavrikakis M (2004) Alloy catalysts designed from first principles. Nat Mater 3(11):810

    Article  CAS  Google Scholar 

  28. Alotaibi A, Hodgkiss S, Kozhevnikova E, Kozhevnikov I (2017) Selective alkylation of benzene by propane over bifunctional Pd-acid catalysts. Catalysts 7(8):233

    Article  Google Scholar 

  29. Sinfelt JH (1973) Specifity in hydrogenolysis by metals. Adv Catal 23:91

    CAS  Google Scholar 

  30. Bond GC (1991) Supported metal catalysts: some unsolved problems. Chem Soc Rev 20:441

    Article  CAS  Google Scholar 

  31. Ribeirio FH, Bonivardi AL, Kim C, Somorjai GA (1994) Transformation of platinum into a stable, high-temperature, dehydrogenation-hydrogenation catalyst by ensemble size reduction with rhenium and sulfur. J Catal 150(1):186

    Article  Google Scholar 

  32. Ahmedzeki NS, Al-Tabbakh BA, Antwan MB, Yilmaz S (2018) Heavy naphtha upgrading by catalytic reforming over novel bi-functional zeolite catalyst. Reac Kinet Mech Cat 125(2):1127

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially financially backed by the Bouali Sina Petrochemical Co., Mahshahr, Iran, under the Contract No. BS/2-137.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cavus Falamaki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kianpoor, Z., Falamaki, C. & Parvizi, M.R. Exceptional catalytic performance of Au–Pt/γ-Al2O3 in naphtha reforming at very low Au dosing levels. Reac Kinet Mech Cat 128, 427–441 (2019). https://doi.org/10.1007/s11144-019-01640-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01640-7

Keywords

Navigation