Skip to main content
Log in

1,3-Butadiene production from ethanol–water mixtures over Zn–La–Zr–Si oxide catalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Zn–La–Zr–Si oxide composition has been investigated in the ethanol-to-butadiene process using ethanol–water mixtures with different water content. An increase of H2O content in the initial reaction mixture decreases ethanol conversion, 1,3-butadiene selectivity, yield and productivity. The results of in situ FTIR spectroscopy (with ethanol and acetone as probe molecules) have shown the main reason for a decrease in activity of the catalyst to be H2O adsorption on active sites of aldol condensation of acetaldehyde and, to a lesser extent, ethanol dehydrogenation. Zn–La–Zr–Si oxide composition is a highly active and selective catalyst for the ethanol-to-butadiene process when ethanol–water mixture of 80 vol% ethanol and 20 vol% H2O is used, 60% 1,3-butadiene yield is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. White WC (2007) Butadiene production process overview. Chem Biol Interact 166:10–14. https://doi.org/10.1016/j.cbi.2007.01.009

    Article  CAS  PubMed  Google Scholar 

  2. Makshina EV, Dusselier M, Janssens W et al (2014) Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene. Chem Soc Rev 43:7917–7953. https://doi.org/10.1039/c4cs00105b

    Article  CAS  PubMed  Google Scholar 

  3. Pomalaza G, Capron M, Ordomsky V, Dumeignil F (2016) Recent breakthroughs in the conversion of ethanol to butadiene. Catalysts 6:203–238. https://doi.org/10.3390/catal6120203

    Article  CAS  Google Scholar 

  4. Angelici C, Weckhuysen BM, Bruijnincx PCA (2013) Chemocatalytic conversion of ethanol into butadiene and other bulk chemicals. ChemSusChem 6:1595–1614. https://doi.org/10.1002/cssc.201300214

    Article  CAS  PubMed  Google Scholar 

  5. Jones MD (2014) Catalytic transformation of ethanol into 1,3-butadiene. Chem Cent J 8:53–58. https://doi.org/10.1186/s13065-014-0053-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mueller P, Wang S-C, Burt S, Hermans I (2017) Influence of metal-doping on the Lewis-acid catalyzed production of butadiene from ethanol studied by modulated operando DRIFTS-MS. ChemCatChem. https://doi.org/10.1002/cctc.201700698

    Article  Google Scholar 

  7. Taifan W, Yan GX, Baltrusaitis J (2017) Surface chemistry of MgO/SiO2 catalysts during the ethanol catalytic conversion to 1,3-butadiene: in situ DRIFTS and DFT study. Catal Sci Technol 7:4648–4668. https://doi.org/10.1039/C7CY01556A

    Article  CAS  Google Scholar 

  8. Ochoa JV, Bandinelli C, Vozniuk O et al (2016) An analysis of the chemical, physical and reactivity features of MgO–SiO2 catalysts for butadiene synthesis with the Lebedev process. Green Chem 18:1653–1663. https://doi.org/10.1039/C5GC02194D

    Article  CAS  Google Scholar 

  9. Chieregato A, Ochoa JV, Bandinelli C et al (2015) On the chemistry of ethanol on basic oxides: revising mechanisms and intermediates in the Lebedev and Guerbet reactions. ChemSusChem 8:377–388. https://doi.org/10.1002/cssc.201402632

    Article  CAS  PubMed  Google Scholar 

  10. Sushkevich VL, Ivanova II (2017) Mechanistic study of ethanol conversion into butadiene over silver promoted zirconia catalysts. Appl Catal B 215:36–49. https://doi.org/10.1016/j.apcatb.2017.05.060

    Article  CAS  Google Scholar 

  11. Zhang H, Ibrahim MYS, Flaherty DW (2018) Aldol condensation among acetaldehyde and ethanol reactants on TiO2: experimental evidence for the kinetically relevant nucleophilic attack of enolates. J Catal 361:290–302. https://doi.org/10.1016/j.jcat.2018.02.030

    Article  CAS  Google Scholar 

  12. Patil PT, Liu D, Liu Y et al (2017) Improving 1,3-butadiene yield by Cs promotion in ethanol conversion. Appl Catal A 543:67–74. https://doi.org/10.1016/j.apcata.2017.05.025

    Article  CAS  Google Scholar 

  13. Klein A, Keisers K, Palkovits R (2016) Formation of 1,3-butadiene from ethanol in a two-step process using modified zeolite-ß catalysts. Appl Catal A 514:192–202. https://doi.org/10.1016/j.apcata.2016.01.026

    Article  CAS  Google Scholar 

  14. Angelici C, Velthoen MEZ, Weckhuysen BM, Bruijnincx PCA (2015) Influence of acid–base properties on the Lebedev ethanol-to-butadiene process catalyzed by SiO2–MgO materials. Catal Sci Technol 5:2869–2879. https://doi.org/10.1039/C5CY00200A

    Article  CAS  Google Scholar 

  15. Larina OV, Kyriienko PI, Trachevskii VV et al (2016) Effect of mechanochemical treatment on acidic and catalytic properties of MgO-SiO2 composition in the conversion of ethanol to 1,3-butadiene. Theor Exp Chem 51:387–393. https://doi.org/10.1007/s11237-016-9440-3

    Article  CAS  Google Scholar 

  16. Rossetti I, Lasso J, Compagnoni M et al (2015) H2 production from bioethanol and its use in fuel-cells. Chem Eng Trans 43:229–234. https://doi.org/10.3303/CET1543039

    Article  Google Scholar 

  17. Dastillung R, Fischer B, Jacquin M, Huyghe R (2017) Method for the production of butadiene from ethanol in one low-water- and low-energy-consumption reaction step. US 20170267604 A1 17

  18. Rahman MM, Davidson SD, Sun J, Wang Y (2016) Effect of water on ethanol conversion over ZnO. Top Catal 59:37–45. https://doi.org/10.1007/s11244-015-0503-9

    Article  CAS  Google Scholar 

  19. Zhu Q, Wang B, Tan T (2016) Conversion of ethanol and acetaldehyde to butadiene over MgO–SiO2 catalysts: effect of reaction parameters and interaction between MgO and SiO2 on catalytic performance. ACS Sustain Chem Eng 5:722–733. https://doi.org/10.1021/acssuschemeng.6b02060

    Article  CAS  Google Scholar 

  20. Jordison TL, Peereboom L, Miller DJ (2016) Impact of water on condensed phase ethanol Guerbet reactions. Ind Eng Chem Res 55:6579–6585. https://doi.org/10.1021/acs.iecr.6b00700

    Article  CAS  Google Scholar 

  21. Han Z, Li X, Zhang M et al (2015) Sol-gel synthesis of ZrO2-SiO2 catalysts for the transformation of bioethanol and acetaldehyde into 1,3-butadiene. RSC Adv 5:103982–103988. https://doi.org/10.1039/C5RA22623F

    Article  CAS  Google Scholar 

  22. Jones MD, Keir CG, Di Iulio C et al (2011) Investigations into the conversion of ethanol into 1,3-butadiene. Catal Sci Technol 1:267–272. https://doi.org/10.1039/c0cy00081g

    Article  CAS  Google Scholar 

  23. Cheong JL, Shao Y, Tan SJR et al (2016) Highly active and selective Zr/MCF catalyst for production of 1,3-butadiene from ethanol in a dual fixed bed reactor system. ACS Sustain Chem Eng 4:4887–4894. https://doi.org/10.1021/acssuschemeng.6b01193

    Article  CAS  Google Scholar 

  24. Kurmach MM, Larina OV, Kyriienko PI et al (2018) Hierarchical Zr-MTW zeolites doped with copper as catalysts of ethanol conversion into 1,3-butadiene. ChemistrySelect 3:8539–8546. https://doi.org/10.1002/slct.201801971

    Article  CAS  Google Scholar 

  25. Sushkevich VL, Ivanova II, Ordomsky VV, Taarning E (2014) Design of a metal-promoted oxide catalyst for the selective synthesis of butadiene from ethanol. ChemSusChem 7:2527–2536. https://doi.org/10.1002/cssc.201402346

    Article  CAS  PubMed  Google Scholar 

  26. Makshina EV, Janssens W, Sels BF, Jacobs PA (2012) Catalytic study of the conversion of ethanol into 1,3-butadiene. Catal Today 198:338–344. https://doi.org/10.1016/j.cattod.2012.05.031

    Article  CAS  Google Scholar 

  27. Larina OV, Kyriienko PI, Soloviev SO (2015) Effect of the addition of zirconium dioxide on the catalytic properties of ZnO/MgO-SiO2 compositions in the production of 1,3-butadiene from ethanol. Theor Exp Chem 51:252–258. https://doi.org/10.1007/s11237-015-9424-8

    Article  CAS  Google Scholar 

  28. Kyriienko PI, Larina OV, Soloviev SO et al (2017) Ethanol conversion into 1,3-butadiene by the Lebedev method over MTaSiBEA zeolites (M = Ag, Cu, Zn). ACS Sustain Chem Eng 5:2075–2083. https://doi.org/10.1021/acssuschemeng.6b01728

    Article  CAS  Google Scholar 

  29. Xu Y, Liu Z, Han Z, Zhang M (2017) Ethanol/acetaldehyde conversion into butadiene over sol–gel ZrO2–SiO2 catalysts doped with ZnO. RSC Adv 7:7140–7149. https://doi.org/10.1039/C6RA25139K

    Article  CAS  Google Scholar 

  30. Hayashi Y, Akiyama S, Miyaji A et al (2016) Experimental and computational studies of the roles of MgO and Zn in talc for the selective formation of 1,3-butadiene in the conversion of ethanol. Phys Chem Chem Phys 18:25191–25209. https://doi.org/10.1039/C6CP04171J

    Article  CAS  PubMed  Google Scholar 

  31. Larina OV, Kyriienko PI, Soloviev SO (2015) Ethanol conversion to 1,3-butadiene on ZnO/MgO–SiO2 catalysts: effect of ZnO content and MgO:SiO2 ratio. Catal Lett 145:1162–1168. https://doi.org/10.1007/s10562-015-1509-4

    Article  CAS  Google Scholar 

  32. Zhang M, Tan X, Zhang T et al (2018) The deactivation of ZnO doped ZrO2-SiO2 catalyst in the conversion of ethanol/acetaldehyde to 1,3-butadiene. RSC Adv 8:34069–34077. https://doi.org/10.1039/C8RA06757K

    Article  CAS  Google Scholar 

  33. Lewandowski M, Ochenduszko A, Jones MD (2014) Process for the production of 1,3-butadiene. WO 2014/180778 A1 14

  34. Larina OV, Kyriienko PI, Soloviev SO (2016) Effect of lanthanum in Zn-La(-Zr)-Si oxide compositions on their activity in the conversion of ethanol into 1,3-butadiene. Theor Exp Chem. https://doi.org/10.1007/s11237-016-9450-1

    Article  Google Scholar 

  35. Grim RG, To AT, Farberow CA et al (2019) Growing the bioeconomy through catalysis: a review of recent advancements in the production of fuels and chemicals from syngas-derived intermediates. ACS Catal 9:4145–4172. https://doi.org/10.1021/acscatal.8b03945

    Article  CAS  Google Scholar 

  36. Wang S, Iglesia E (2016) Substituent effects and molecular descriptors of reactivity in condensation and esterification reactions of oxygenates on acid-base pairs at TiO2 and ZrO2 surfaces. J Phys Chem C 120:21589–21616. https://doi.org/10.1021/acs.jpcc.6b07304

    Article  CAS  Google Scholar 

  37. Akiyama S, Miyaji A, Hayashi Y et al (2018) Selective conversion of ethanol to 1,3-butadiene using germanium talc as catalyst. J Catal 359:184–197. https://doi.org/10.1016/j.jcat.2018.01.001

    Article  CAS  Google Scholar 

  38. Rossetti I, Compagnoni M, De Guido G et al (2017) Ethylene production from diluted bioethanol solutions. Can J Chem Eng 95:1752–1759. https://doi.org/10.1002/cjce.22828

    Article  CAS  Google Scholar 

  39. Matheus CRV, Chagas LH, Gonzalez GG et al (2018) Synthesis of propene from ethanol: a mechanistic study. ACS Catal 8:7667–7678. https://doi.org/10.1021/acscatal.8b01727

    Article  CAS  Google Scholar 

  40. Quesada J, Faba L, Díaz E, Ordóñez S (2017) Role of the surface intermediates in the stability of basic mixed oxides as catalyst for ethanol condensation. Appl Catal A 542:271–281. https://doi.org/10.1016/j.apcata.2017.06.001

    Article  CAS  Google Scholar 

  41. Mueller P, Burt SP, Love AM et al (2016) Mechanistic study on the Lewis-acid catalyzed synthesis of 1,3-butadiene over Ta-BEA using modulated operando DRIFTS-MS. ACS Catal 6:6823–6832. https://doi.org/10.1021/acscatal.6b01642

    Article  CAS  Google Scholar 

  42. Yan T, Dai W, Wu G et al (2018) Mechanistic insights into one-step catalytic conversion of ethanol to butadiene over bifunctional Zn–Y/beta zeolite. ACS Catal 8:2760–2773. https://doi.org/10.1021/acscatal.8b00014

    Article  CAS  Google Scholar 

  43. Zaki MI, Hasan MA, Pasupulety L (2001) Surface reactions of acetone on Al2O3, TiO2, ZrO2, and CeO2: IR spectroscopic assessment of impacts of the surface acid-base properties. Langmuir 17:768–774. https://doi.org/10.1021/la000976p

    Article  CAS  Google Scholar 

  44. Moteki T, Flaherty DW (2016) Mechanistic insight to C-C bond formation and predictive models for cascade reactions among alcohols on Ca- and Sr-hydroxyapatites. ACS Catal 6:4170–4183. https://doi.org/10.1021/acscatal.6b00556

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by programs of National Academy of Sciences of Ukraine KPKVK 6541230 “Support for the development of priority areas of scientific research” (Grant No. 0116U000061) and KPKVK 6541030 “New functional substances and materials of chemical production” (Grant No. 0119U101562).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga V. Larina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larina, O.V., Remezovskyi, I.M., Kyriienko, P.I. et al. 1,3-Butadiene production from ethanol–water mixtures over Zn–La–Zr–Si oxide catalyst. Reac Kinet Mech Cat 127, 903–915 (2019). https://doi.org/10.1007/s11144-019-01618-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01618-5

Keywords

Navigation