Skip to main content
Log in

Kinetic study of liquid phase esterification of lactic acid with n-amyl alcohol catalyzed by cation exchange resins: experimental and statistical modeling

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The liquid phase esterification of lactic acid with n-amyl alcohol over an acidic cationic exchange resin such as Indion 180, Amberlyst-15 and Seralite WRC-50 was carried out on a laboratory scale. The activity and performance of Indion 180, Amberlyst-15, and Seralite WRC-50 were evaluated. Kinetic experiments were conducted in a batch reactor in the reaction temperature range from 333 to 363 K. The Eley–Rideal and Langmuir–Hinshelwood model was used to correlate the kinetic data and the estimation of kinetic parameters. The UNIFAC group contribution method was applied to study the nonideality in the reaction. Theoretically, mass transfer limitations were calculated from the reaction kinetics data. The activation energy and enthalpy of esterification reaction were found to be 43.71 ± 0.56 and 51.42 ± 0.64 kJ/mol. The response surface methodology was employed for statistical model development and optimization in the temperature range from 333 to 363 K, initial molar ratio 1 to 4, and catalyst loading from 2 to 8%. The maximum optimized conversion (53.89%) of lactic acid was found at temperature 357 K, molar ratio of 2.82, and catalyst loading of 6.17%. The predicted conversion (53.89%) by quadratic response surface model was good agreement with the experimental conversion (54.68 ± 1.13).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tanaka T, Hoshina M, Tanabe S, Sakai K, Ohtsubo S, Taniguchi M (2006) Bioresour Technol 97:211–217

    Article  CAS  Google Scholar 

  2. Ye L, Zhou X, Hudari MS, Li Z, Wu JC (2013) Bioresour Technol 132:38–44

    Article  CAS  Google Scholar 

  3. Singhvi M, Joshi D, Adsul M, Varma A, Gokhale D (2010) Green Chem 12:1106–1111

    Article  CAS  Google Scholar 

  4. Okano K, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Appl Microbiol Biotechnol 85:413–423

    Article  CAS  Google Scholar 

  5. Tashiro Y, Kaneko W, Sun Y, Shibata K, Inokuma K, Zendo T, Sonomoto K (2011) Appl Microbiol Biotechnol 89:1741–1750

    Article  CAS  Google Scholar 

  6. Bedard J, Chiang H, Bhan A (2012) J Catal 290:210–219

    Article  CAS  Google Scholar 

  7. Santhanakrishnan A, Shannon A, Peereboom L, Lira CT, Miller DJ (2013) Ind Eng Chem Res 52:1845–1853

    Article  CAS  Google Scholar 

  8. Guo S, He B, Li J, Zhao Q, Cheng Y (2014) Chem Eng Technol 37:478–482

    Article  CAS  Google Scholar 

  9. Delgado P, Sanz MT, Beltran S, Nunez LA (2010) Chem Eng J 165:693–700

    Article  CAS  Google Scholar 

  10. Tanaka K, Yoshikawa R, Ying C, Kita H, Okamoto K (2002) Chem Eng Sci 57:1577–1584

    Article  CAS  Google Scholar 

  11. Engin A, Haluk H, Gurkan K (2003) Green Chem 5:460–466

    Article  CAS  Google Scholar 

  12. Yixin QU, Shaojun P, Shui W, Zhiqiang Z, Jidong W (2009) Chin J Chem Eng 17:773–780

    Article  Google Scholar 

  13. Benedict DJ, Parulekar SJ, Tsai SP (2003) Ind Eng Chem Res 42:2282–2291

    Article  CAS  Google Scholar 

  14. Nemec D, Gemert RV (2005) Ind Eng Chem Res 44:9718–9726

    Article  CAS  Google Scholar 

  15. Delgado P, Sanz MT, Beltran S (2009) J Membr Sci 332:113–120

    Article  CAS  Google Scholar 

  16. de Jong MC, Feijt R, Zondervan E, Nijhuis TA, de Haan AB (2009) Appl Catal A 365:141–147

    Article  Google Scholar 

  17. Khudsange CR, Wasewar KL (2017) Int J Chem React Eng. https://doi.org/10.1515/ijcre-2016-0176

    Article  Google Scholar 

  18. Sharma M, Toor AP, Wanchoo RK (2016) Chem Eng Commun 203:801–808

    CAS  Google Scholar 

  19. Pecar D, Gorsek A (2018) Chem Eng Commun. https://doi.org/10.1080/00986445.2018.1428960

    Article  Google Scholar 

  20. Tanabe K, HoElderich WF (1999) Appl Catal A 181:399–434

    Article  CAS  Google Scholar 

  21. Sheldon RA, Downing RS (1999) Appl Catal A 189:163–183

    Article  CAS  Google Scholar 

  22. Zhang Y, Ma L, Yang J (2004) React Funct Polym 61:101–114

    Article  CAS  Google Scholar 

  23. Delgado P, Sanz MT, Beltran S (2007) Chem Eng J 126:111–118

    Article  CAS  Google Scholar 

  24. Toor AP, Sharma M, Thakur S, Wanchoo RK (2011) Bull Chem React Eng Catal 6:39–45

    CAS  Google Scholar 

  25. Box GEP, Draper NR (1987) Empirical model-building and response surfaces. Wiley, New York

    Google Scholar 

  26. Montgomery CD (2001) Design and analysis of experiments. Wiley, New York

    Google Scholar 

  27. Wu J, Wang JL, Li MH, Lin JP, Wei DZ (2010) Bioresour Technol 101:8936–8941

    Article  CAS  Google Scholar 

  28. Liao CC, Chung TW (2013) Chem Eng Res Des 91:2457–2464

    Article  CAS  Google Scholar 

  29. Lente G (2018) Curr Opin Chem Eng 21:76–83

    Article  Google Scholar 

  30. Gee JC, Jeansonne MS, Yang H, Fisher S (2017) Reac Kinet Mech Cat 122:21–41

    Article  CAS  Google Scholar 

  31. Sanz MT, Murga R, Beltran S, Cabezas JL, Coca J (2004) Ind Eng Chem Res 43:2049–2053

    Article  CAS  Google Scholar 

  32. Fredenslund A, Jones RL, Prausnitz JM (1975) AIChE J 21:1086–1099

    Article  CAS  Google Scholar 

  33. Ronnback R, Salmi T, Vuori A, Haario H, Lohtonen J, Sundqvist A, Ttrronen E (1997) Chem Eng Sci 52:3369–3381

    Article  CAS  Google Scholar 

  34. Fogler HS (2016) Elements of chemical reaction engineering. Pearson Education Inc., Indianapolis

    Google Scholar 

  35. Lilja J, Aumo J, Salmi T, Murzin DY, Maki-Arvela P, Sundell M, Ekman K, Peltonen R, Vainio H (2002) Appl Catal A 228:253–267

    Article  CAS  Google Scholar 

  36. Reid RC, Prausnitz JM, Poling BE (1987) The properties of gases and liquids, 4th edn. McGraw-Hill, New York

    Google Scholar 

  37. Mazzoti M, Neri B, Gelosa D, Kruglov A, Morbidelli M (1997) Ind Eng Chem Res 36:3–10

    Article  Google Scholar 

  38. Sanz MT, Murga R, Beltran S, Cabezas JL, Coca J (2002) Ind Eng Chem Res 41:512–517

    Article  CAS  Google Scholar 

  39. Kumar R, Mahajani SM (2007) Ind Eng Chem Res 46:6873–6882

    Article  CAS  Google Scholar 

  40. Lilja J, Warna J, Salmi T, Pettersson LJ, Ahlkvist J, Grenman H, Ronnholm M, Murzin DY (2005) Chem Eng J 115:1–12

    Article  CAS  Google Scholar 

  41. Fermeglia M, Braiuca P, Gardossi L, Pricl S, Halling PJ (2006) Biotechnol Prog 22:1146–1152

    Article  CAS  Google Scholar 

  42. Fauzi AHM, Amin NAS, Mat R (2014) Appl Energy 114:809–818

    Article  Google Scholar 

  43. Zhang L, Xian M, He YC, Li LZ, Yang JM, Yu ST (2009) Bioresour Technol 100:4368–4373

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kailas L. Wasewar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khudsange, C.R., Wasewar, K.L. Kinetic study of liquid phase esterification of lactic acid with n-amyl alcohol catalyzed by cation exchange resins: experimental and statistical modeling. Reac Kinet Mech Cat 125, 535–554 (2018). https://doi.org/10.1007/s11144-018-1461-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-018-1461-6

Keywords

Navigation