Skip to main content
Log in

Zinc supported on alkaline activated HZSM-5 for aromatization reaction

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The parent HZSM-5 was activated by NaOH solution with different concentration to obtain a series of alkaline activated HZSM-5-m (m denotes the concentration of NaOH). Zn (2 wt%) was supported on HZSM-5 and HZSM-5-m via the impregnation method by using Zn(NO3)2·6H2O as a precursor. The materials were systematically characterized by XRD, FT-IR, N2 adsorption–desorption at low temperature, and NH3-TPD techniques. It was found that the acidity and textural properties of the HZSM-5-m could be adjusted by altering the concentration of NaOH. Moreover, the amount and distribution of acidity and the pore structure of catalyst had a significantly influence on heptane conversion and aromatics content. As a result, an efficient Zn/HZSM-5-m catalyst for aromatization reaction was obtained by changing the concentration of NaOH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bhan A, Delgass WN (2008) Catal Rev 50:19–151

    Article  CAS  Google Scholar 

  2. Tshabalala TE, Scurrell MS (2015) Catal Commun 72:49–52

    Article  CAS  Google Scholar 

  3. Coqueblin H, Richard A, Uzio D, Pinard L, Pouilloux Y, Epron F (2016) Catal Today 289:62–69

    Article  Google Scholar 

  4. Rodrigues VDO Jr, Vasconcellos FJ, Júnior ADCF (2016) J Catal 344:252–262

    Article  CAS  Google Scholar 

  5. Choudhary VR, Mantri K, Sivadinarayana C (2000) Microporous Mesoporous Mater 37:1–8

    Article  CAS  Google Scholar 

  6. Song Y, Sun C, She W, Lin L (2007) Appl Catal A 317:266–274

    Article  CAS  Google Scholar 

  7. Zhao YH, Cao CY (2015) Energ Source Part A 37:76–83

    Article  CAS  Google Scholar 

  8. Wannapakdee W, Wattanakit C, Paluka V, Yutthalekha T, Limtrakul J (2016) RSC Adv 6:2875–2881

    Article  CAS  Google Scholar 

  9. Song Y, Zhu X, Song Y, Wang Q, Xu L (2006) Appl Catal A 302:69–77

    Article  CAS  Google Scholar 

  10. Aramburo LR, Karwacki L, Cubillas P, Asahina S, de Winter DAM, Drury MR, Buurmans ILC, Stavitski E, Mores D, Daturi M, Bazin P, Dumas P, Thibault-Starzyk F, Post JA, Anderson MW, Terasaki O, Weckhuysen BM (2011) Chem Eur J 17:13773–13781

    Article  CAS  Google Scholar 

  11. Zhou F, Gao Y, Ma H, Wu G, Liu C (2017) Mol Catal 438:37–46

    Article  CAS  Google Scholar 

  12. Wei Z, Xia T, Liu M, Cao Q, Xu Y, Zhu K, Zhu X (2015) Front Chem Sci Eng 9:450–460

    Article  CAS  Google Scholar 

  13. Xiao W, Wang F, Xiao G (2015) RSC Adv 5:63697–63704

    Article  CAS  Google Scholar 

  14. Ahmadpour J, Taghizadeh M (2015) C R Chim 18:834–847

    Article  CAS  Google Scholar 

  15. Sadowska K, Góra-Marek K, Drozdek M, Kustrowski P, Datka J, Martinez Triguero J, Rey F (2013) Micropor Mesopor Mat 168:195–205

    Article  CAS  Google Scholar 

  16. Mohamed RM, Aly HM, EI-Shahat MF, Ibrahim IA (2005) Microporous Mesoporous Mater 79:7–12

    Article  CAS  Google Scholar 

  17. Luo CW, Huang C, Li A, Yi WJ, Feng XY, Xu ZJ, Chao ZS (2016) Ind Eng Chem Res 55:893–911

    Article  CAS  Google Scholar 

  18. Shirazi L, Jamshidi E, Ghasemi MR (2008) Cryst Res Technol 43:1300–1306

    Article  CAS  Google Scholar 

  19. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  20. Wang Q, Cui ZM, Cao CY, Song WG (2011) J Phys Chem C 115:24987–24992

    Article  CAS  Google Scholar 

  21. Xu T, Zhang Q, Song H, Wang Y (2012) J Catal 295:232–241

    Article  CAS  Google Scholar 

  22. Ding J, Wang M, Peng L, Xue N, Wang Y, He MY (2015) Appl Catal A 503:147–155

    Article  CAS  Google Scholar 

  23. Meng F, Wang Y, Wang S, Wang S (2016) Reac Kinet Mech Cat 119:671–683

    Article  CAS  Google Scholar 

  24. Shetti VN, Kim J, Srivastava R, Choi M, Ryoo R (2008) J Catal 254:296–303

    Article  CAS  Google Scholar 

  25. Wang X, Zhang J, Zhang T, Xiao H, Song F, Han Y, Tan Y (2016) RSC Adv 6:23428–23437

    Article  CAS  Google Scholar 

  26. Fan Y, Yin J, Shi G, Liu H, Bao X (2009) Energ Fuel 23:3016–3023

    Article  CAS  Google Scholar 

  27. Viswanadham N, Dhar GM, Rao TSRP (1997) J Mol Catal A 125:L87–L90

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the science foundation of the Liaoning higher education institutions of China (JL201615404) and the opening project of Guangxi college and universities key laboratory of beibu gulf oil and natural gas resource effective utilization (2016KLOG04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Hua Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, YH., Gao, TY., Wang, YJ. et al. Zinc supported on alkaline activated HZSM-5 for aromatization reaction. Reac Kinet Mech Cat 125, 1085–1098 (2018). https://doi.org/10.1007/s11144-018-1426-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-018-1426-9

Keywords

Navigation