Skip to main content
Log in

The comparison of Co, Ni, Mo, CoMo and NiMo sulfided catalysts in rapeseed oil hydrodeoxygenation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The Al2O3 supported monometallic Co, Ni and Mo and bimetallic CoMo and NiMo catalysts were compared in rapeseed oil hydrodeoxygenation (HDO) reaction after in situ sulfidation. The reaction was described by five pseudo-first order rate constants (k 1k 5) for the simplified reaction scheme: triglycerides (Tgs) to octadecane (k 1); Tgs to oxygenates (Oxs; i.e., sum of fatty acids, fatty alcohols, and esters of fatty acids and fatty alcohols) (k 2); Tgs to heptadecane (k 3); Oxs to octadecane (k 4), and Oxs to heptadecane (k 5). The empirical pseudo-first order rate constant of the hydrocarbons (Hcs) product formation (k Hc ) increased in the order Ni/Al2O3 ~ Co/Al2O3 < CoMo/Al2O3 ~ Mo/Al2O3 ≪ NiMo/Al2O3 showing hence a significant synergy between Ni and Mo. All monometallic catalysts exhibited k 1 and k 3 practically zero and the reaction proceeded essentially through the formation of the oxygenated reaction intermediates (high k 2). The Co/Al2O3 and Ni/Al2O3 catalyzed selectively hydrodecarboxylation (HDC) of fatty acids (high k 5). Over Mo/Al2O3, the HDO pathway, however, was nearly the exclusive one (high k4). CoMo/Al2O3 and NiMo/Al2O3 catalysts yielded both HDO and HDC products suggesting partial synergy in the relative selectivity HDO/HDC between Co(Ni) and Mo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Baladincz P, Tóth C, Hancsók J (2012) Chem Eng Trans 29:1237–1242

    Google Scholar 

  2. Kubičková I, Kubička D (2010) Waste Biomass Valoriz 1:293–308

    Article  Google Scholar 

  3. Kiatkittipong W, Phimsen S, Kiatkittipong K, Wongsakulphasatch S, Laosiripojana N, Assabumrungrat S (2013) Fuel ProcessTechnol 116:16–26

    Article  CAS  Google Scholar 

  4. Hachemi I, Kumar N, Mäki-Arvela P, Roine J, Peurla M, Hemming J, Salonen J, Murzin DY (2017) J Catal 347:205–221

    Article  CAS  Google Scholar 

  5. Jeništová K K, Hachemi I, Mäki-Arvela P, Kumar N, Peurla M, Čapek L, Wärnå J, Murzin DY (2017) Chem Eng J 316:401–409

    Article  Google Scholar 

  6. Srifa A, Faungnawakij K, Itthibenchapong V, Viriya-empikul N, Charinpanitkul T, Assabumrungrat S (2014) Bioresour Technol 158:81–90

    Article  CAS  Google Scholar 

  7. Hancsók J, Kasza T, Kovács S, Solymosi P, Holló A (2012) J Clean Prod 34:76–81

    Article  Google Scholar 

  8. Şenol OI, Ryymin EM, Viljava TR, Krause AOI (2007) J Mol Catal A 268:1–8

    Article  Google Scholar 

  9. Varakin AN, Salnikov VA, Nikulshina MS, Maslakov KI, Mozhaev AV, Nikulshin PA (2017) Catal Today 292:110–120

    Article  CAS  Google Scholar 

  10. Nikul’shin PA, Sal’nikov VA, Pimerzin AA, Eremina YV, Koklyukhin AS, Tsvetkov VS, Pimerzin AA (2016) Pet Chem 56:56–61

    Article  Google Scholar 

  11. Laurent E, Delmon B (1994) Appl Catal A 109:77–115

    Article  CAS  Google Scholar 

  12. Szarvas T, Eller Z, Kasza T, Ollár T, Tétényi P, Hancsók J (2015) Appl Catal B 165:245–252

    Article  CAS  Google Scholar 

  13. Ceclan RE, Pop A, Ceclan M (2012) Chem Eng Trans 29:1177–1182

    Google Scholar 

  14. Martins MI, Pires RF, Alves MJ, Hori CE, Reis MHM, Cardos VL (2013) Chem Eng Trans 32:817–822

    Google Scholar 

  15. Nascimento FP, Oliveira ARG, Paredes MLL, Costa ALH, Pessoa FLP (2013) Chem Eng Trans 32:829–834

    Google Scholar 

  16. Ignat RM, Kiss AA (2012) Chem Eng Trans 29:1141–1146

    Google Scholar 

  17. Smoláková L, Pöpperle L, Kocík J, Dubnová L, Horáček J, Čapek L (2017) Reac Kinet Mech Cat 121:209–224

    Article  Google Scholar 

  18. Kubička D, Horáček L, Setnička M, Bulánek R, Zukal A, Kubičková I (2014) Appl Catal B 145:101–107

    Article  Google Scholar 

  19. Coumans AE, Hensen EJM (2017) Appl Catal B 201:290–301

    Article  CAS  Google Scholar 

  20. Zhou L, Lawal A (2017) Appl Catal A 532:40–49

    Article  CAS  Google Scholar 

  21. Donnis B, Egeberg RG, Blom P, Knudsen KG (2009) Top Catal 52:229–240

    Article  CAS  Google Scholar 

  22. Han Y, Stankovikj F, Garcia-Perez M (2017) Fuel Process Technol 159:328–339

    Article  CAS  Google Scholar 

  23. Sugami Y, Minami E, Saka S (2017) Fuel 197:272–276

    Article  CAS  Google Scholar 

  24. Kubička D, Kaluža L (2010) Appl Catal A 372:199–208

    Article  Google Scholar 

  25. Furimsky E (2013) Catal Today 217:13–56

    Article  CAS  Google Scholar 

  26. Costa PR (2007) PTQ Biofuels 2007:32–33

  27. Neste Oil (2012) Neste Oil, Espoo. http://www.nesteoil.com/default.asp?path=1,41,11991,22708. Accessed 1 Oct 2012

  28. Neste Oil (2012) Neste Oil, Espoo. http://www.nesteoil.com/default.asp?path¼1,41,11991,12243,13565. Accessed 1 Feb 2012

  29. Hodge C (2006) Workshop on bioenergy. California Energy Commission. http://www.energy.ca.gov/bioenergy_action_plan/documents/2006-03-09_workshop/2006-03-09_NESTE_OIL.PDF. Accessed 9 March 2012

  30. UOP (2012) UOP/ENI, Erkrath. http://www.uop.com/hydroprocessing-ecofining, Accessed 1 Oct 2012

  31. Frey S (2011) Honeywell development of green jet fuel technology. In: IAE Bioenergy ExCo67 meeting, paper 08, Helsinki

  32. Kalnes TN, Marker T, Shonnard D, Koers KP (2008) PTQ Biofuels 2008:7–11

  33. Gosselink RW, Hollak SAW, Chang SW, Van Haveren J, De Jong KP, Bitter JH, Van Es DS (2013) ChemSusChem 6:1576–1594

    Article  CAS  Google Scholar 

  34. Šimáček P, Kubička D, Šebor G, Pospíšil M (2010) Fuel 89:611–615

    Article  Google Scholar 

  35. Kaluža L, Vít Z, Zdražil M (2005) Appl Catal A 282:247–253

    Article  Google Scholar 

  36. Kaluža L, Gulková D, Vít Z, Zdražil M (2007) Appl Catal A 324:30–35

    Article  Google Scholar 

Download references

Acknowledgements

L.K. gratefully appreciates and acknowledges the financial support of the Czech Science Foundation (Grant No. 17-22490S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luděk Kaluža.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 237 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaluža, L., Kubička, D. The comparison of Co, Ni, Mo, CoMo and NiMo sulfided catalysts in rapeseed oil hydrodeoxygenation. Reac Kinet Mech Cat 122, 333–341 (2017). https://doi.org/10.1007/s11144-017-1247-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1247-2

Keywords

Navigation