Skip to main content
Log in

Cyclohexene hydrocarbomethoxylation catalyzed by ruthenium(III) chloride

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

For the first time, the kinetics of cyclohexene hydrocarbomethoxylation reaction catalyzed by RuCl3 is reported. First order reaction rate dependences were established for cyclohexene and methanol. The extreme dependence of the reaction rate from the partial CO pressure at its dilution with argon was obtained. The dependence of the reaction rate on RuCl3 concentration showed a non-linear growth with an increase in RuCl3 concentration. It was established that adding HCl to the reaction mixture caused a decrease in the reaction rate while adding of NaCl, KCl and NaBr increased its rate. The reaction rate dependence on NaCl concentration had linear character. The kinetic patterns of cyclohexene hydrocarbomethoxylation catalyzed by RuCl3/NaCl system were studied. It was established that the rate dependences on concentration of cyclohexene, methanol, RuCl3, and CO pressure were of the same character as in the absence of NaCl, but the reaction rate increased. It was suggested that the alkoxy mechanism of the investigated reaction and catalytic ruthenium complexes deactivation in the ligand exchange reactions with CO participation. The yield of the cyclohexene hydrocarbomethoxylation product, methyl cyclohexanecarboxylate, under the studied conditions reached 61.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Noskov YuG, Petrov ES (1993) Kinet Katal 34:1005–1011

    CAS  Google Scholar 

  2. Noskov YuG, Simonov AI, Petrov ES (2000) Kinet Catal 41:511–516

    Article  CAS  Google Scholar 

  3. Petrov ES (1988) Zh Fiz Khim 62:2858–2868

    CAS  Google Scholar 

  4. Petrov ES, Noskov YuG (1998) Ross Khim Zh 42:149–157

    CAS  Google Scholar 

  5. Aver’yanov VA, Batashev SA, Sevostianova NT, Zarytovsky VM (2005) Catal Ind 119:25–33

    Google Scholar 

  6. Kron TE, Petrov ES (2003) Petrol Chem 43:375–378

    Google Scholar 

  7. Kiss G (2001) Chem Rev 101:3435–3456

    Article  CAS  Google Scholar 

  8. Sevostyanova NT, Batashev SA (2016) Bull Sci Pract 11:99–105. doi:10.5281/zenodo.166790

    Google Scholar 

  9. Kealy TJ, Benson RE (1961) J Org Chem 26:3126–3130

    Article  CAS  Google Scholar 

  10. Benson RE (1959) US Patent 2,871,262 C1 USA

  11. Edward L, Lindsey JV, Lindsey RV (1959) US Patent 2,876,254 C1 USA

  12. Nifant’ev IE, Sevostyanova NT, Averyanov VA, Batashev SA, Vorobiev AA, Toloraya SA, Bagrov VV, Tavtorkin AN (2012) Appl Catal A 449:145–152

    Article  Google Scholar 

  13. Lur’ye YY (1989) Spravochnik po analiticheskoy khimii (Analytical chemistry book of reference). Khimia, Moscow

    Google Scholar 

  14. Nifant’ev IE, Batashev SA, Toloraya SA, Tavtorkin AN, Sevostyanova NT, Vorobiev AA, Bagrov VV, Averyanov VA (2011) J Mol Catal A 350:64–68

    Article  Google Scholar 

  15. Nifant’ev I, Sevostyanova N, Batashev S, Vorobiev A, Tavtorkin A, Krut’ko D (2016) Reac Kinet Mech Cat 119:75–91

    Article  Google Scholar 

  16. Vavasori A, Toniolo L, Cavinato G (2003) J Mol Catal A 191:9–21

    Article  CAS  Google Scholar 

  17. Vavasori A, Cavinato G, Toniolo L (2001) J Mol Catal A 176:11–18

    Article  CAS  Google Scholar 

  18. Vavasori A, Toniolo L (1996) J Mol Catal A 110:13–23

    Article  CAS  Google Scholar 

  19. Cavinato G, Toniolo L, Vavasori A (2004) J Mol Catal A 219:233–240

    Article  CAS  Google Scholar 

  20. Cavinato G, Vavasori A, Toniolo L, Dolmella A (2004) Inorg Chim Acta 357:2737–2747

    Article  CAS  Google Scholar 

  21. Cavinato G, Toniolo L, Vavasori A (2006) Top Organomet Chem 18:125–164

    Article  CAS  Google Scholar 

  22. Cavinato G, Toniolo L (1983) J Organomet Chem 241:275–279

    Article  CAS  Google Scholar 

  23. Karpyuk AD, Terekhova MI, Kolosova ND et al (1985) Russ Chem Bull 34:221–222

    Article  Google Scholar 

  24. Seayad A, Jayasree S, Damodaran K, Toniolo L, Chaudhari RV (2000) J Organomet Chem 241:275–279

    Google Scholar 

  25. del Rio I, Claver C, van Leeuwen PWNM (2001) Eur J Inorg Chem 2719–2738

  26. Behr A, Hubert AJ, Keim W, Loevenich H, Puentes E, Röper M, Ugo R (1983) Catalysis in C1 chemistry. D. Reidel Publishing Company, Dordrecht

    Google Scholar 

  27. Bruce MI, Stone FGA (1967) J Chem Soc (A) 1238–1241

  28. Benedetti E, Braca G, Sbrana G, Salvetti F, Grassi B (1972) J Organomet Chem 37:363–373

    Article  Google Scholar 

  29. Bennett MA, Bruce MI, Matheson TW (1982) In: Wilkinson G, Gordon F, Stone A, Abel EW (eds) Comprehensive organometallic chemistry, vol 4. Elsevier, Amsterdam, pp 692–820

  30. Perez F, Oda S, Geary LM, Krische MJ (2016) Top Curr Chem 374:35

    Article  Google Scholar 

  31. Barnard CFJ, Daniels JA, Jeffery J, Mawby RJ (1976) J Chem Soc Dalton Trans 953–961

  32. Green MLH (1968) In: Coates GE, Green MLH, Wade K (eds) Organometallic compounds, 3rd edn. Chapman and Hall, London

  33. Aver’yanov VA, Batashev SA, Sevost’yanova NT, Nosova NM (2006) Kinet Catal 47:375–383

    Article  Google Scholar 

  34. Bruce MI (1982) In: Wilkinson G, Gordon F, Stone A, Abel EW (eds) Comprehensive organometallic chemistry, vol 4. Elsevier, Amsterdam, pp 661–690

  35. Knoth WH (1972) J Am Chem Soc 94:104–109

    Article  CAS  Google Scholar 

  36. Lucenti E, Cariati E, Roberto D (2003) J Organomet Chem 669:44–47

    Article  CAS  Google Scholar 

  37. Aver’yanov VA, Sevost’yanova NT, Batashev SA, Demerlii AM (2013) Petrol Chem 53:39–45

    Article  Google Scholar 

  38. Aver’yanov VA, Sevost’yanova NT, Batashev SA (2008) Petrol Chem 48:287–295

    Article  Google Scholar 

  39. Averyanov VA, Sevostyanova NT, Batashev SA, Vorob’ev AA, Rodionova AS (2014) Russ J Phys Chem B 8:140–147

    Article  CAS  Google Scholar 

  40. Sevostyanova NT, Averyanov VA, Batashev SA, Rodionova AS, Vorob’ev AA (2014) Russ Chem Bull 63:837–842

    Article  CAS  Google Scholar 

  41. Kron TE, Terekhova MI, Noskov YuG, Petrov ES (2001) Kinet Catal 42:182–188

    Article  CAS  Google Scholar 

  42. Noskov YuG, Petrov ES (2001) Russ Chem Bull 50:1839–1843

    Article  CAS  Google Scholar 

  43. Nifant’ev I, Sevostyanova N, Batashev S, Vorobiev A, Tavtorkin A (2015) Reac Kinet Mech Cat 116:63–77

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Russian Foundation for Basic Research within the framework of Project No. 14-08-00535.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadezhda Sevostyanova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevostyanova, N., Batashev, S. Cyclohexene hydrocarbomethoxylation catalyzed by ruthenium(III) chloride. Reac Kinet Mech Cat 122, 315–331 (2017). https://doi.org/10.1007/s11144-017-1238-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1238-3

Keywords

Navigation