Skip to main content
Log in

Potassium modified alumina as a catalyst for the aldol condensation of benzaldehyde with linear C3–C8 aldehydes

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Different types of catalysts based on potassium modified alumina were prepared. The source of potassium was either potassium carbonate or potassium hydroxide. The prepared materials were characterized by UV–Vis spectroscopy, X-ray diffraction, thermogravimetry, nitrogen physisorption and tested as catalysts in the aldol condensation of benzaldehyde with C3–C8 linear aldehydes. Some of the products may serve as important fragrant compounds—especially jasmine aldehyde (prepared from heptanal) or 2-hexylcinnamylaldehyde (from octanal). It was found that the reaction rate increased with the increasing amount of potassium loaded on the catalyst. The reaction rate increased with decreasing the length of the aldehyde chain. The selectivity to the autocondensation product increased when the pore diameter of catalyst was decreased. The aldol condensation of benzaldehyde with propanal performed using alumina modified by 3.6 mmol potassium/g of material resulted in 97% propanal conversion with 89% selectivity to 2-methylcinnamylaldehyde and 6% selectivity to 2-methylpent-2-enal. The aldol condensation of benzaldehyde with octanal performed using alumina modified by 1.5 mmol potassium/g of material resulted in 29% propanal conversion with 17% selectivity to 2-hexylcinnamylaldehyde and 82% selectivity to 2-hexyldec-2-enal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hattori H (2015) Appl Catal A 504:103–109

    Article  CAS  Google Scholar 

  2. Li X, Yu D, Zhang W, Li Z, Zhang X, Huang H (2013) Appl Catal A 455(30):1–7

    CAS  Google Scholar 

  3. Esmaili J, Ehsani MR (2013) J Encapsul Adsorpt Sci 3:57–63

    Article  Google Scholar 

  4. Kloetstra R, van Bekkum H (1995) J Chem Soc Chem Commun 10:1005–1006

    Article  Google Scholar 

  5. Lin J, Chao K (1991) Zeolites 11:376–379

    Article  CAS  Google Scholar 

  6. Zhen S, Seff K (1999) J Phys Chem B 103:10409–10416

    Article  CAS  Google Scholar 

  7. Tang Y, Chen G, Lu Y (2012) Res Chem Intermed 38(3):937–946

    Article  CAS  Google Scholar 

  8. Paterová I, Vyskočilová E, Červený L (2012) Top Catal 55:873–879

    Article  Google Scholar 

  9. Han H, Lee Y, Lee M, Patil AJ, Shin H (2011) ACS Appl Mater Interfaces 3:2564–2572

    Article  CAS  Google Scholar 

  10. Fonseca MG, Silva CR, Airoldi V (1999) Langmuir 15:5048–5055

    Article  Google Scholar 

  11. Lang W, Su B, Guo Y, Chu L (2012) Sci China Chem 55(6):1167–1174

    Article  CAS  Google Scholar 

  12. Zhang Y, Zhang Y, Xu J, Jing C, Zhang F (2008) Thermochim Acta 468(1–2):15–20

    Article  CAS  Google Scholar 

  13. Noiroj K, Intarapong P, Luengnaruemitchai A, Jai-InRenewable S (2009) Energy 34:1145–1150

    Article  CAS  Google Scholar 

  14. Vrbková E, Vyskočilová E, Červený L (2015) Reac Kinet Mech Cat 114:675–684

    Article  Google Scholar 

  15. Sudheesh N, Sharma SK, Shukla RS (2010) J Mol Catal A 321(1–2):77–82

    Article  CAS  Google Scholar 

  16. Sharma SK, Patel HA, Jasra RV (2008) J Mol Catal A 280(1–2):61–67

    Article  CAS  Google Scholar 

  17. Sharma SK, Parikh PA, Jasra RV (2010) Appl Catal A 386(1–2):34–42

    Article  CAS  Google Scholar 

  18. Lopez J, Valente JS, Clacens JM, Figueras F (2008) J Catal 208(1):30–37

    Article  Google Scholar 

  19. Díez VK, Apesteguía CR, Di Cosimo JI (2006) J Catal 240(2):235–244

    Article  Google Scholar 

  20. Roelofs JCAA, van Dillen AJ, de Jong KP (2000) Catal Today 60:297–303

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Word of thanks to the Ministry of education, youth and sports for financial support from specific university research (MSMT No 20-SVV/2016). Authors would like to thank to Ing. Miloslav Lhotka, Ph.D. for measuring nitrogen physisorption and Ing. Martin Veselý, Ph.D. for measuring SEM-EDS element maps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Vrbková.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vrbková, E., Vyskočilová, E. & Červený, L. Potassium modified alumina as a catalyst for the aldol condensation of benzaldehyde with linear C3–C8 aldehydes. Reac Kinet Mech Cat 121, 307–316 (2017). https://doi.org/10.1007/s11144-017-1150-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1150-x

Keywords

Navigation