Skip to main content
Log in

Chitosan-functionalized nano-titanium dioxide: a novel and highly efficient nanocatalyst for the synthesis of 2,4,5-trisubstituted imidazoles under solvent-free conditions

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In the present work, chitosan-functionalized nano-titanium dioxide as a novel type of retrievable organocatalyst is synthesized via a two-step process involving the covalent grafting of 2,4-toluene diisocyanate as a regioselective linker to nano-TiO2 (n-TiO2@TDI) and subsequent grafting of chitosan through a nucleophilic reaction. The prepared nanocatalyst was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, thermogravimetric analysis and the Brunauer–Emmett–Teller analyses and it was found to be a robust and highly active heterogeneous nanocatalyst for the synthesis of 2,4,5-trisubstituted imidazoles under solvent-free conditions. Furthermore, the catalyst could be recovered after a simple work-up and reused for several cycles without deterioration in catalytic property which confirms its stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Scheme 3
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vivek P, Rajender SV (2010) Green Chem 12:743–754

    Article  Google Scholar 

  2. Didier A, Fenf L, Jaime RA (2005) Angew Chem Int Ed 44:7852–7872

    Article  Google Scholar 

  3. Schauermann S, Nilius N, Shaikhutdinov S, Freund HJ (2012) Acc Chem Res 14195:4–6

    Google Scholar 

  4. Tabrizian E, Amoozadeh A (2016) Catal Sci Technol 6:6267–6276

    Article  CAS  Google Scholar 

  5. Ou B, Li D, Liu Q, Zhou Z, Liao B (2012) Mater Chem Phys 135:1104–1107

    Article  CAS  Google Scholar 

  6. Mital GS, Manoj T (2011) Chin Sci Bull 56:16

    Google Scholar 

  7. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Chem Rev 114:9919–9986

    Article  CAS  Google Scholar 

  8. Yeul VS, Rayalu SS (2013) J Polym Environ 21:606–614

    Article  CAS  Google Scholar 

  9. Hu Y-LW, Han Qi F, Shao JZ, Gao JQ (2011) Int J Nanomed 6:3351

    CAS  Google Scholar 

  10. Zhang K, Zhao M, Cai L, Wang Z-K, Sun Y-F (2010) Chin J Polym Sci 28:555–561

    Article  CAS  Google Scholar 

  11. El Kadib A, Bousmina M (2012) Chem Eur J 18:8264–8277

    Article  Google Scholar 

  12. El Kadib A (2015) ChemSusChem 8:217–244

    Article  CAS  Google Scholar 

  13. Guibal E (2005) Prog Polym Sci 30:71–109

    Article  CAS  Google Scholar 

  14. Chen J, Liu M, Zhang L, Zhangand J, Jin L (2003) Water Res 37:3815–3820

    Article  CAS  Google Scholar 

  15. Tabrizian E, Amoozadeh A, Rahmani S (2016) RSC Adv 6:21854–21864

    Article  CAS  Google Scholar 

  16. Tabrizian E, Amoozadeh A, Shamsi T (2016) Reac Kinet Mech Cat. doi:10.1007/s11144-016-1047-0

    Article  Google Scholar 

  17. Chun Ys, Ha K, Lee YJ, Lee JS, Kim HS, Park YS, Yoon KB (2002) Chem. Commun 17:1846–1847

    Article  Google Scholar 

  18. Xiaand H, Song M (2006) J Mater Chem 16:1843–1851

    Google Scholar 

  19. Li S, Liu Y (1998) Polyurethane adhesive. Chemical Industry Press, Beijing, pp 13–20

    Article  CAS  Google Scholar 

  20. Zhang S, Zhou J, Zhang Z, Du Z, Vorontsovand AV, Jin Z (2000) Chin Sci Bull 45:1533–1536

    Article  Google Scholar 

  21. Solymosiand F, Raskó J (1980) J Catal 63:217–225

    Article  Google Scholar 

  22. Haldoraiand Y, Shim JJ (2014) Polym Compos 35:327–333

    Google Scholar 

  23. S.R.S Cullity BD (2001) Interaction design foundation, 3rd edn. Prentice-Hall, Englewood Cliffs

    Article  CAS  Google Scholar 

  24. Kohut A, Voronov A, Peukert W (2007) Langmuir 23:504–508

    Article  CAS  Google Scholar 

  25. Hong P-Z, Li S-D, Ou C-Y, Li C-P, Yang L, Zhang C-H (2007) Appl Polym Sci 105:547–551

    Article  CAS  Google Scholar 

  26. Antolini M, Bozzoli A, Ghiron C, Kennedy G, Rossiand T, Ursini A (1999) Bioorg Med Chem Lett 9:1023–1028

    Article  CAS  Google Scholar 

  27. Lombardino JG, Wiseman EH (1974) J Med Chem 17:1182–1188

    Google Scholar 

  28. Pozharskii A, Soldatenkovand AT, Katritzky AR (2011) Heterocycles and health., pp 139–183

    CAS  Google Scholar 

  29. Abrahams SL, Hazen RJ, Batsonand G, Phillips P (1989) J Pharmacol Exp Ther 249:359–365

    Article  Google Scholar 

  30. Malekiand A, Paydar R (2015) RSC Adv 5:33177–33184

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Faculty of chemistry of Semnan University for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Amoozadeh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4595 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, M., Amoozadeh, A. & Kowsari, E. Chitosan-functionalized nano-titanium dioxide: a novel and highly efficient nanocatalyst for the synthesis of 2,4,5-trisubstituted imidazoles under solvent-free conditions. Reac Kinet Mech Cat 120, 605–617 (2017). https://doi.org/10.1007/s11144-016-1114-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-1114-6

Keywords

Navigation