Skip to main content
Log in

Preparation of manganese-impregnated alumina-pillared bentonite, characterization and catalytic oxidation of CO

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Al-pillared clays from local available bentonite were synthesized via two methods by the application of conventional and ultrasonic treatments during the intercalation stage. The results of XRD and N2 adsorption indicated an increase in the basal spacing, the specific BET surface area, and porosity subsequent to pillaring by both methods with a considerable shortening of the intercalation process for the ultrasonic method. Al-pillared bentonites were used as supports to prepare manganese oxide catalysts by the wet impregnation of 2 and 10 wt% of Mn. The presence of MnO2 and Mn2O3 were detected by X-ray diffraction and confirmed by temperature-programmed reduction for the higher loading catalyst with 10 wt% of Mn. The catalytic activity of our catalysts was evaluated in the CO oxidation reaction. According to our results, the concentration of the Mn seems to be the factor that decisively affects the catalytic activity at the expense of the preparation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Royer S, Duprez D (2011) Catalytic oxidation of carbon monoxide over transition metal oxides. ChemCatChem 3:24–65

    Article  CAS  Google Scholar 

  2. Gullotta F, Di Masi A, Ascenzi P (2012) Carbon monoxide: an unusual drug. IUBMB Life 64:378–386

    Article  CAS  Google Scholar 

  3. Raub JA, Mathieu-Nolf M, Hampson NB, Thom SR (2000) Carbon monoxide poisoning—a public health perspective. Toxicology 145:1–14

    Article  CAS  Google Scholar 

  4. Prockop LD, Chichkova RI (2007) Carbon monoxide intoxication: an updated review. J Neurol Sci 262:122–130

    Article  CAS  Google Scholar 

  5. Raub JA, Benignus VA (2002) Carbon monoxide and the nervous system. Neurosci Biobehav Rev 26:925–940

    Article  CAS  Google Scholar 

  6. Lawther PJ (1975) Carbon monoxide. Br Med Bull 31:256–260

    CAS  Google Scholar 

  7. Bateman DN (2012) Carbon monoxide. Medicine (Baltimore) 40:115–116

    Article  Google Scholar 

  8. Biabani-Ravandi A, Rezaei M, Fattah Z (2013) Low-temperature CO oxidation over nanosized Fe–Co mixed oxide catalysts: effect of calcination temperature and operational conditions. Chem Eng Sci 94:237–244

    Article  CAS  Google Scholar 

  9. Biabani-Ravandi A, Rezaei M (2012) Low temperature CO oxidation over Fe–Co mixed oxide nanocatalysts. Chem Eng J 184:141–146

    Article  CAS  Google Scholar 

  10. Taylor SH, Rhodes C (2006) The oxidation of carbon monoxide at ambient temperature over mixed copper–silver oxide catalysts. Catal Today 114:357–361

    Article  CAS  Google Scholar 

  11. Abdel Halim KS, Khedr MH, Nasr MI, El-Mansy AM (2007) Factors affecting CO oxidation over nanosized Fe2O3. Mater Res Bull 42:731–741

    Article  CAS  Google Scholar 

  12. Gac W (2007) The influence of silver on the structural, redox and catalytic properties of the cryptomelane-type manganese oxides in the low-temperature CO oxidation reaction. Appl Catal B 75:107–117

    Article  CAS  Google Scholar 

  13. Figueras F (1988) Pillared clays as catalysts. Catal Rev 30:457–499

    Article  CAS  Google Scholar 

  14. Bergaya F, Aouad A, Mandalia T (2006) Chapter 7.5 pillared clays and clay minerals. Dev Clay Sci 1:393–421

    Article  CAS  Google Scholar 

  15. Clearfield A (1996) Chapter 14—preparation of pillared clays and their catalytic properties. In: Moser WR (ed) Advances catalysis nanostructered material. Academic Press, San Diego, pp 345–394

    Chapter  Google Scholar 

  16. Ding Z, Kloprogge JT, Frost RL (2001) Porous clays and pillared clays-based catalysts. Part 2: a review of the catalytic and molecular sieve applications. J Porous Mater 8:273–293

    Article  CAS  Google Scholar 

  17. Gil A, Korili SA, Vicente MA (2008) Recent advances in the control and characterization of the porous structure of pillared clay catalysts. Catal Rev 50:153–221

    Article  CAS  Google Scholar 

  18. Gil A, Gandía LM, Vicente MA (2000) Recent advances in the synthesis and catalytic applications of pillared clays. Catal Rev 42:145–212

    Article  CAS  Google Scholar 

  19. Herling MM, Breu J (2014) The largely unknown class of microporous hybrid materials: clays pillared by molecules. Zeitschrift für Anorg und Allg Chemie 640:547–560

    Article  CAS  Google Scholar 

  20. Kloprogge JT (1998) Synthesis of smectites and porous pillared clay catalysts: a review. J Porous Mater 5:5–41

    Article  CAS  Google Scholar 

  21. Poncelet G, Fripiat JJ (2001) In: Smith J (ed) Handbook of Heterogeneous Catalysis, 2nd edn. Wiley, New York

  22. Pérez A, Centeno MA, Odriozola JA, Molina R, Moreno S (2008) The effect of ultrasound in the synthesis of clays used as catalysts in oxidation reactions. Catal Today 133–135:526–529

    Article  Google Scholar 

  23. Olaya A, Blanco G, Bernal S, Moreno S, Molina R (2009) Synthesis of pillared clays with Al–Fe and Al–Fe–Ce starting from concentrated suspensions of clay using microwaves or ultrasound, and their catalytic activity in the phenol oxidation reaction. Appl Catal B 93:56–65

    Article  CAS  Google Scholar 

  24. Tomul F (2011) Effect of ultrasound on the structural and textural properties of copper-impregnated cerium-modified zirconium-pillared bentonite. Appl Surf Sci 258:1836–1848

    Article  CAS  Google Scholar 

  25. Carriazo JG, Martínez LM, Odriozola JA, Moreno S, Molina R, Centento MA (2007) Gold supported on Fe, Ce, and Al pillared bentonites for CO oxidation reaction. Appl Catal B 72:157–165

    Article  CAS  Google Scholar 

  26. Álvarez A, Moreno S, Molina R, Ivanova S, Centeno MA, Odriozola JA (2012) Gold supported on pillared clays for CO oxidation reaction: effect of the clay aggregate size. Appl Clay Sci 69:22–29

    Article  Google Scholar 

  27. Martínez TLM, Domínguez MI, Sanabria N, Hernández WY, Moreno S, Molina R, Odriozola JA, Centeno MA (2009) Deposition of Al–Fe pillared bentonites and gold supported Al–Fe pillared bentonites on metallic monoliths for catalytic oxidation reactions. Appl Catal A 364:166–173

    Article  Google Scholar 

  28. Xu Z, Inumaru K, Yamanaka S (2001) Catalytic properties of metal loaded silica-pillared manganese titanate for CO oxidation. Appl Catal A 210:217–224

    Article  CAS  Google Scholar 

  29. Vicente MA, Belver C, Trujillano R, Rives V, Álvarez AC, Lambert JF, Korili SA, Gandia LM, Gil A (2004) Preparation and characterisation of Mn- and Co-supported catalysts derived from Al-pillared clays and Mn- and Co-complexes. Appl Catal A 267:47–58

    Article  CAS  Google Scholar 

  30. Gandia LM, Vicente MA, Gil A (2000) Preparation and characterization of manganese oxide catalysts supported on alumina and zirconia-pillared clays. Appl Catal A 196:281–292

    Article  Google Scholar 

  31. Li J, Li L, Wu F, Zhang L, Liu X (2013) Dispersion–precipitation synthesis of nanorod Mn3O4 with high reducibility and the catalytic complete oxidation of air pollutants. Catal Commun 31:52–56

    Article  CAS  Google Scholar 

  32. Tian H, He J, Liu L, Wang D, Hao Z, Ma C (2012) Highly active manganese oxide catalysts for low-temperature oxidation of formaldehyde. Microporous Mesoporous Mater 151:397–402

    Article  CAS  Google Scholar 

  33. Liu Y, Luo M, Wei Z, Xin Q, Ying P, Li C (2001) Catalytic oxidation of chlorobenzene on supported manganese oxide catalysts. Appl Catal B 29:61–67

    Article  CAS  Google Scholar 

  34. Morales MR, Barbero BP, Cadús LE (2007) Combustion of volatile organic compounds on manganese iron or nickel mixed oxide catalysts. Appl Catal B 74:1–10

    Article  CAS  Google Scholar 

  35. Pozan GS (2012) Effect of support on the catalytic activity of manganese oxide catalyts for toluene combustion. J Hazard Mater 221–222:124–130

    Article  Google Scholar 

  36. Reynolds RC (1985) Newmod, a computer program for the calculation of one dimensional X ray diffraction patterns of mixed-layered clays. RC Reynolds 8:57–62

    Google Scholar 

  37. Deboer J (1964) Studies on pore systems in catalysts IV. The two causes of reversible hysteresis. J Catal 3:268–273

    Article  CAS  Google Scholar 

  38. Katdare SP, Ramaswamy V, Ramaswamy AV (1999) Ultrasonication: a competitive method of intercalation for the preparation of alumina pillared montmorillonite catalyst. Catal Today 49:313–320

    Article  CAS  Google Scholar 

  39. Katdare SP, Ramaswamy V, Ramaswamy AV (2000) Factors affecting the preparation of alumina pillared montmorillonite employing ultrasonics. Microporous Mesoporous Mater 37:329–336

    Article  CAS  Google Scholar 

  40. Sanabria NR, Molina R, Moreno S (2009) Effect of ultrasound on the structural and textural properties of Al–Fe pillared clays in a concentrated medium. Catal Lett 130:664–671

    Article  CAS  Google Scholar 

  41. Reed C, Lee YK, Oyama ST (2006) Structure and oxidation state of silica-supported manganese oxide catalysts and reactivity for acetone oxidation using ozone. J Phys Chem B 110:20–67

    Article  Google Scholar 

  42. Zuo S, Huang Q, Li J, Zhou R (2009) Promoting effect of Ce added to metal oxide supported on Al pillared clays for deep benzene oxidation. Appl Catal B 91:204–209

    Article  CAS  Google Scholar 

  43. Kazin PE, Tret YD (2008) Synthesis of magnetoresistive glass—ceramic composites in the SrO–MnOx–SiO2–La2O3 system. Catal Lett 2:34–36

    Google Scholar 

  44. Craciun R (1998) Structure/activity correlation for unpromoted and CeO2-promoted. Catal Commun 55:25–31

    CAS  Google Scholar 

  45. Galeano LA, Gil A, Vicente MA (2011) Strategies for immobilization of manganese on expanded natural clays: catalytic activity in the CWPO of methyl orange. Appl Catal B 104:252–260

    Article  CAS  Google Scholar 

  46. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquéol J, Siemieniewska T (1985) International union of pure commission on colloid and surface chemistry including catalysis * reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  47. Gregg SJ, Sing KS (1982) Adsorption, surface area and porosity. J Electrochem Soc 114(11):279C–279C

    Article  Google Scholar 

  48. Lowell S, Shields JE, Thomas MA, Thommes M (2005) Characterization of porous solids and powders: surface area, pore size, and density. springer, Berlin

    Google Scholar 

  49. Schüth F, Sing KSW, Weitkamp J (2002) Handbook of porous solids. Wiley, Weinheim

    Book  Google Scholar 

  50. Leofanti G, Padovan M, Tozzola G, Venturelli B (1998) Surface area and pore texture of catalysts. Catal Today 41:207–219. doi:10.1016/S0920-5861(98)00050-9

    Article  CAS  Google Scholar 

  51. Jozwiak WK, Kaczmarek E, Maniecki TP et al (2007) Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres. Appl Catal A 326:17–27

    Article  CAS  Google Scholar 

  52. Li J, Li L, Cheng W, Wu F, Lu X, Li Z (2014) Controlled synthesis of diverse manganese oxide-based catalysts for complete oxidation of toluene and carbon monoxide. Chem Eng J 244:59–67

    Article  CAS  Google Scholar 

  53. Tomul F, Balci S (2009) Characterization of Al, Cr-pillared clays and CO oxidation. Appl Clay Sci 43:13–20

    Article  CAS  Google Scholar 

  54. Sambeth JE, Thomas HJ (2013) Volatile organic compound removal over bentonite-supported Pt, Mn and Pt/Mn monolithic catalysts. Reac Kinet Mech Cat 108:443–458

    Article  Google Scholar 

  55. Zaki MI, Hasan MA, Pasupulety L, Fouad NE (1999) CO and CH total oxidation over manganese oxide supported on ZrO, TiO, TiO–AlO and SiO–AlO catalysts. New J Chem 23:1197–1202

    Article  CAS  Google Scholar 

  56. Venkataswamy P, Jampaiah D, Lin F, Alxneit I, Reddy BM (2015) Applied surface science structural properties of alumina supported Ce–Mn solid solutions and their markedly enhanced catalytic activity for CO oxidation. Appl Surf Sci 349:299–309

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the project MINECO/FEDER/Ref: MAT2013-40823-R for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Dhahri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhahri, M., Muñoz, M.A., Yeste, M.P. et al. Preparation of manganese-impregnated alumina-pillared bentonite, characterization and catalytic oxidation of CO. Reac Kinet Mech Cat 118, 655–668 (2016). https://doi.org/10.1007/s11144-016-1017-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-1017-6

Keywords

Navigation