Skip to main content

Advertisement

Log in

Comparison of Sources of Narrowband and Ultra-Wideband Electromagnetic Pulses in Terms of the Efficiency of their Impact on Electronic Tools

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We solve the problem of determination of the conditions under which the source of microwave pulses and the source of ultra-wideband electromagnetic pulses have an identical resulting impact in terms of energy on semiconductor elements of technical means without special receiving antennas. It is shown that sources of microwave pulses, whose carrier frequencies range from hundreds of megahertz to several gigahertz, reach the desired effect at lower energy costs. However, as the carrier frequency increases, their energy efficiency becomes lower, and ultra-wideband sources turn out to be more efficient in many practical cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GOST R 52863-2007 Information Protection. Automated Systems in a Protected Construction. Tests for Immunity to Intentional Electromagnetic Power Impacts. General Requirements [in Russian], Standardinform, Moscow (2008).

  2. K. Yu. Sakharov, V. A. Turkin, O. V. Mikheev, and A. V. Sukhov, in: Proc. VIIIth Russian Sci. Tech. Conf. on Electromagnetic Compatibility, May 23–24, 2019, Moscow, pp. 91–97.

  3. V. G. Usychenko and L. N. Sorokin, Immunity of Microwave Radio Receiving Devices to Electromagnetic Impact [in Russian], Radiotekhika, Moscow (2017).

  4. GOST R 51317.2.5-2000. ELectromagnetic Compatibility of Technical Means. Electromagnetic Environment. Classification of Electromagnetic Interference at the Locations of Technical Means [in Russian], Gosstandart Rossii, Moscow (2001).

  5. Yu. G. Yushkov, P. Yu. Chumerin, S. N. Artemenko, et al., J. Commun. Technol. Electron., 46, No. 8, 944–947 (2001).

    Google Scholar 

  6. R. Hoad, N. Carter, D. Herke, and S. Watkins, IEEE Trans. Electromagn. Compat., 46, No. 3, 390–395 (2004). https://doi.org/10.1109/TEMC.2004.831815

    Article  Google Scholar 

  7. K. Yu. Sakharov, O. V. Mikheev, V. A. Turkin, et al., Tekhnol. Elektromagn. Sovm., No. 2(17), 44–49 (2006).

  8. A. V. Berdyshev, V. F. Ivoilov, A. V. Isaikin, et al., Radiotekhnika, No. 8, 85–88 (2000).

  9. B. B. Akbashev, A. I. Aleshko, Yu. V. Galich, et al., Tekhnol. Elektromagn. Sovm., No. 1(24), 22–26 (2008).

  10. K. Yu. Sakharov, A. Sukhov, V. Ugolev, and Y. Gurevich, in: Proc. 2018 Int. Symp. on Electromagnetic Compatibility (EMC Europe 2018), August 27–30, 2018, Amsterdam, pp. 40–43. https://doi.org/10.1109/EMCEurope.2018.8484992

  11. A. V. Klyuchnik, Yu. A. Pirogov, and A. V. Solodov, J. Commun. Technol. Electron., 56, No. 3, 342–346 (2011). https://doi.org/10.1134/S1064226911030041

    Article  Google Scholar 

  12. D. Nisch, M. Camp, F. Sabath, et al., IEEE Trans. Electromagn. Compat., 46, No. 3, 380–389 (2004). https://doi.org/10.1109/TEMC.2004.831842

    Article  Google Scholar 

  13. M. Camp, H. Gerth, H. Garbe, and H. Haas, IEEE Trans. Electromagn. Compat., 46, No. 3, 368–379 (2004). https://doi.org/10.1109/TEMC.2004.831816

    Article  Google Scholar 

  14. M. Camp, H. Garbe, and F. Sabath, in: Proc. IEEE Int. Symp. on Electromagnetic Compatibility, August 8–12, 2005, Chicago, pp. 483–488. https://doi.org/10.1109/ISEMC.2005.1513563

  15. A. P. Stepovik, E. Yu. Shamaev, and M. M. Armanov, J. Commun. Technol. Electron., 62, No. 8, 910–915 (2017). https://doi.org/10.1134/S1064226917080137

    Article  Google Scholar 

  16. H. H. Meinke, F. W. Gundlach, Taschenbuch der Hochfrequenztechnik, Band 1, Springer-Verlag, Berlin-Heidelberg (1992).

  17. C. A. Balanis, Antenna Theory. Analysis and Design, Wiley, Hoboken, NJ (2016).

  18. A. V. Segen’, Prikl. Problemy Bezopasnosti Tekh. Biotekh. Sist., Nos. 1–2, 97–108 (2014).

  19. I. S. Gonorovsky, Radioengineering Circuits and Signals [in Russian], Radio i Svyaz’, Moscow (1986).

  20. V. M. Dwyer, A. J. Franklin, and D. S. Campbell, Solid-State Electron., 33, No. 5, 553–560 (1990). https://doi.org/10.1016/0038-1101(90)90239-B

    Article  ADS  Google Scholar 

  21. V. E. Ostashev, A. V. Ul’yanov, and V. M. Fedorov, J. Commun. Technol. Electron., 65, No. 3, 234–238 (2020). https://doi.org/10.1134/S1064226920030134

    Article  Google Scholar 

  22. K. Yu. Sakharov, Radiators of Ultrashort Electromagnetic Pulses and Methods of Measuring Their Parameters [in Russian], Moscow Institute of Electronics and Mathematics, Moscow (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Sorokin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 64, No. 6, pp. 493–504, June 2021. Russian DOI: 10.52452/00213462_2021_64_06_493

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usychenko, V.G., Sorokin, L.N. & Usychenko, A.S. Comparison of Sources of Narrowband and Ultra-Wideband Electromagnetic Pulses in Terms of the Efficiency of their Impact on Electronic Tools. Radiophys Quantum El 64, 444–454 (2021). https://doi.org/10.1007/s11141-022-10146-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-022-10146-7

Navigation