Skip to main content
Log in

Multibarrel Gyrotrons

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We propose a fundamentally new scheme of the multibarrel gyrotron. As an example, we consider three promising variants of implementation of the scheme with a generation frequency of about 140 GHz or its multiple in the case of operation at higher cyclotron harmonics. A variant of a multibarrel gyrotron with wide-range continuous frequency tuning about 13.1 GHz is discussed. The possibility of operating a gyrotron of this type at the third cyclotron harmonic with a total power of the output radiation exceeding 1 kW at a frequency of 448 GHz is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L. Gol’denberg, G. G. Denisov, V. V. Zapevalov, et al., Radiophys. Quantum Electron., 39, No. 6, 423–446 (1996). https://doi.org/https://doi.org/10.1007/BF02122390

  2. G. S. Nusinovich, M. K. A. Thumm, and M. I. Petelin, J. Infrared, Millimeter, Terahertz Waves, 35, No. 4, 325–381 (2014). https://doi.org/https://doi.org/10.1007/s10762-014-0050-7

  3. T. Idehara and S. P. Sabchevski, IEEE Trans. Plasma Sci., 46, No. 7, 2452–2459 (2018). https://doi.org/https://doi.org/10.1109/TPS.2017.2775678

  4. V. A. Flyagin, A. N. Kuftin, V. K. Lygin, et al., in: Proc. III Int. Workshop “Strong Microwaves in Plasmas,” Vol. 2, August 7–14, 1996, Nizhny Novgorod, Russia, p. 711–716.

  5. Y. Bykov, A. Eremeev, M.Glyavin, et al., IEEE Trans. Plasma Sci., 32, No. 1, 67–72 (2004). https://doi.org/https://doi.org/10.1109/TPS.2004.823904

  6. G. G. Denisov, V. E. Zapevalov, A. G. Litvak, and V. E. Myasnikov, Radiophys. Quantum Electron., 46, No. 10, 757–768 (2003). https://doi.org/https://doi.org/10.1023/B:RAQE.0000026869.75334.a1

  7. M.Yu.Glyavin, G.G. Denisov, V. E. Zapevalov, et al., Phys. Usp., 59, No. 6, 595–604 (2016). https://doi.org/https://doi.org/10.3367/UFNe.2016.02.037801

  8. V. L. Bratman, A. G. Litvak, and E. V. Suvorov, Phys. Usp., 54, No. 8, 837–844 (2011). https://doi.org/https://doi.org/10.3367/UFNe.0181.201108f.0867

  9. V. E. Zapevalov, Radiophys. Quantum Electron., 61, No. 4, 272–280 (2018). https://doi.org/https://doi.org/10.1007/s11141-018-9888-1

  10. V. E. Zapevalov, V. I.Kurbatov, O.V.Malygin, et al., USSR Author’s Certificate No. 786677, Int. Patent Classification: H01J 25/00. Cyclotron Resonance Maser No. 2801425.18-25, filed July 25, 1979; publ. February 23, 1989.

  11. V. E. Zapevalov and Sh. E. Tsimring, in: Gyrotron [in Russian], Inst. Appl. Phys., Gorky (1981), p. 60.

  12. V. E. Zapevalov, V. N.Manuilov, O. V. Malygin, and Sh. E. Tsimring, Radiophys. Quantum Electron., 37, No. 3, 237–240 (1994). https://doi.org/https://doi.org/10.1007/BF01054034

  13. S. Liu, D. Liu, Y. Yan, et al., Proc. 40th Int. Conf. Infrared, Millimeter, Terahertz Waves (IRMMW-THz). August 23–28, 2015, Hong Kong, China, p. 1–2. https://doi.org/https://doi.org/10.1109/IRMMW-Thz.2015.7327569

  14. T. Idehara, M. Glyavin, A. Kuleshov, et al., Rev. Sci. Instrum., 88, No. 9, 094708 (2017). https://doi.org/https://doi.org/10.1063/1.4997994

  15. I. V. Bandurkin, M. Y. Glyavin, T. Idehara, A. V. Savilov, IEEE Trans. Electron Devices, 66, No. 5, 2396–2400 (2019). https://doi.org/https://doi.org/10.1109/TED.2019.2905047

  16. E. Jerby, A.Kesar, M.Korol, et al., IEEE Trans. Plasma Sci., 27, No. 2, 445–455 (1999). https://doi.org/https://doi.org/10.1109/27.772272

  17. R. B. Palmer, R.C. Fernow, J. Fischer, et al., Nucl. Instr. Meth. Phys. Res. A, 366, No. 1, 1–16 (1995). https://doi.org/https://doi.org/10.1016/0168-9002(95)00609-5

  18. L. M. Borisov, E. A. Gelvich, E. V. Zhariy, et al., Elektron. Tekhn., Ser. 1, Electron. SVCh, No. 1(455), 12–20 (1993).

    Google Scholar 

  19. I. A. Freydovich, E. A. Knapp, P. V. Nevsky P. V., et al., Nucl. Instr. Meth. Phys. Res. A, 539, Nos. 1–2, 63–73 (2005). https://doi.org/https://doi.org/10.1016/j.nima.2004.10.004

  20. V. E. Zapevalov, V. N. Manuilov, and Sh. E. Tsimring, Radiophys. Quantum Electron., 34, No. 2, 174–179 (1991). https://doi.org/https://doi.org/10.1007/BF01045526

  21. V. L. Bratman, Yu. K. Kalynov, and V. N. Manuilov, Radiophys. Quantum Electron., 52, No. 7, 472 (2009). https://doi.org/https://doi.org/10.1007/s11141-009-9157-4

  22. V. L. Bratman, Yu. K. Kalynov, V. N. Manuilov, and S. V. Samsonov, Tech. Phys., 50, No. 12, 1611–1616 (2005). https://doi.org/https://doi.org/10.1134/1.2148563

  23. T. Idehara, I. Ogawa, S. Mitsudo, et al., IEEE Trans. Plasma Sci., 32, No. 3, 903–909 (2004). https://doi.org/https://doi.org/10.1109/TPS.2004.827614

  24. T. Idehara, I. Ogawa, S. Mitsudo, et al., Vacuum, 77, 539–546 (2005). https://doi.org/https://doi.org/10.1016/j.vacuum.2004.09.022

  25. V. L. Bratman, Yu. K. Kalynov, and V. N. Manuilov, J. Commun. Technol. Electron., 56, No. 4, 500–507 (2011). https://doi.org/https://doi.org/10.1134/S1064226911040024

  26. M. A. Moiseev, L. L. Nemirovskaya, V. E. Zapevalov, and N. A. Zavolsky, J. Infrared. Millim. Terahertz Waves, 18, No. 11, 2117–2128 (1997). https://doi.org/https://doi.org/10.1007/BF02678254

  27. N. A. Zavolsky, V. E. Zapevalov, A. S. Zuev, et al., Radiophys. Quantum Electron., 61, No. 6, 436–444 (2018). https://doi.org/https://doi.org/10.1007/s11141-018-9905-4

  28. A. E. Fedotov, R. M. Rozental, I. V. Zotova, et al., J. Infrared. Millim. Terahertz Waves, 39, No. 10, 975–983 (2018). https://doi.org/https://doi.org/10.1007/s10762-018-0522-2

  29. V. L. Bratman, M. A. Moiseev, M. I. Petelin, and R. ´E. ´Erm, Radiophys. Quantum Electron., 16, No. 4, 474–480 (1973). https://doi.org/https://doi.org/10.1007/BF01030898

  30. N. A. Zavolsky, V. E. Zapevalov, O. V. Malygin, et al., Radiophys. Quantum Electron., 52, Nos. 5–6, 379 (2009). https://doi.org/https://doi.org/10.1007/s11141-009-9148-5

  31. M. N. Vilkov, N. S. Ginzburg, I. V. Zotova, and A. S. Sergeev, Bull. Rus. Acad. Sci. Phys., 82, No. 1, 53–58 (2018). https://doi.org/https://doi.org/10.3103/S1062873818010227

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Zuev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, No. 2, pp. 105–114, February 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zapevalov, V.E., Zuev, A.S. & Kuftin, A.N. Multibarrel Gyrotrons. Radiophys Quantum El 63, 97–105 (2020). https://doi.org/10.1007/s11141-020-10038-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-020-10038-8

Navigation