Skip to main content
Log in

Non-Canonical Gyrotrons

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We consider some gyrodevices, which differ from the gyrotron canon, in particular, devices with sectioned active media and/or interaction spaces, and non-tubular helical electron beams, and non-cylindrical (coaxial, quasioptical, echelette, etc.) cavities. Promising variants of noncanonical gyrotrons, including multi-beam and multi-barrel tubes, are considered from the viewpoint of frequency tuning and mode selection enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Gaponov, A. L. Gol’denberg, M. I. Petelin, and V. K. Yulpatov, Author’s Certificate 223931 USSR, IPC H01J25/00, “Device for generation of electromagnetic oscillations in the centimeter, millimeter, and submillimeter wavelength ranges”, filed 24.03.1967, publ. 25.03.1976.

  2. G. S. Nusinovich, M. Thumm, and M. I. Petelin, J. Infrared Mm THz Waves, 35, 325 (2014).

    Article  Google Scholar 

  3. V. E. Zapevalov, Radiophys. Quantum Electron., 54, Nos. 8–9, 507 (2012).

    Article  ADS  Google Scholar 

  4. G. S. Nusinovich, Introduction to the Physics of Gyrotrons, The Johns Hopkins Univ. Press, Baltimore (2004).

    Google Scholar 

  5. Sh. E. Tsimring, Electron Beams and Microwave Vacuum Electronics, John Wiley and Sons, Hoboken, New Jersey (2007).

    Google Scholar 

  6. V. E. Zapevalov, Fusion Sci. Technol., 52, No. 2, 340 (2007).

    Article  Google Scholar 

  7. M. Thumm, State-of-the-Art of High Power Gyro-Devices and Free Electron Masers, KIT Sci. Publ., Karlsruhe (2014).

  8. I. A. Freydovich, P.V.Nevsky, M. Y. Vorobyev, et al., Proc. IVEC/IVESC 2006, 25–27 April 2006, California, p. 307.

  9. A. V. Konnov, Proc. 10th Int. Vacuum Electronics Conf. IVEC 2009, 28–30 April 2009, Italy, p. 363.

  10. L. M. Borisov, E. A. Gelvich, E. V. Zhary, et al., Élektron. Tekhn. Ser. 1, SVCh Tekhn., Vyp.1, 12 (1993).

  11. V. E. Zapevalov and Sh. E. Tsimring, Radiophys. Quantum Electron., 33, No. 11, 954 (1990).

    Article  ADS  Google Scholar 

  12. V. E. Zapevalov, V. N. Manuilov, O. V. Malygin, and Sh. E. Tsimring, Radiophys. Quantum Electron., 37, No. 3, 237 (1994).

    Article  ADS  Google Scholar 

  13. V. E. Zapevalov, S. A. Malygin, and Sh. E. Tsimring, Radiophys. Quantum Electron., 36, No. 6, 346 (1993).

    Article  ADS  Google Scholar 

  14. T. Idehara, M. Glyavin, A. Kuleshov, et al., Rev. Sci. Instrum., 88, 094708 (2017).

    Article  ADS  Google Scholar 

  15. E. Jerby, A. Kesar, M. Korol, et al., IEEE Trans. Plasma Sci., 27, 445 (1999).

    Article  ADS  Google Scholar 

  16. A. V. Gaponov, V. A. Flyagin, A. L. Gol’denberg, et al., Int. J. Electron., 51, No. 4, 277 (1981).

    Article  Google Scholar 

  17. K. J. Kim, M. E. Read, J.M.Baird, et al., Int. J. Electron., 51, No. 4, 427 (1981).

    Article  Google Scholar 

  18. V. G. Pavelyev, Sh. E. Tsimring, and V. E. Zapevalov, Int. J. Electron., 63, No. 3, 379 (1987).

    Article  Google Scholar 

  19. S. N. Vlasov, N. A. Zavolsky, V. E. Zapevalov, et al., Radiophys. Quantum Electron., 52, No. 9, 642 (2009).

    Article  ADS  Google Scholar 

  20. V. I. Belousov, S. N. Vlasov, N. A. Zavolsky, et al., Radiophys. Quantum Electron., 57, No. 6, 446 (2014).

    Article  ADS  Google Scholar 

  21. V. I. Belousov, S. N. Vlasov, N. A. Zavolsky, et al., Proc. 9th Int. Workshop Strong Microwaves and THz Waves: Sources and Applications. Nizhny Novgorod—Perm—Nizhny Novgorod, July 24–30, 2014, p. 166.

  22. L. N. Agapov, S. D. Bogdanov, N. P. Venedictov, et al., Radiophys. Quantum Electron., 56, No. 7, 441 (2013).

    Article  ADS  Google Scholar 

  23. V. A. Flyagin, V. I. Khizhnyak, V. N. Manuilov, et al., Int. J. Infrared Millimeter Waves, 24, No. 1, 2 (2003).

    Article  Google Scholar 

  24. N. S. Ginsburg, L.Y. Zotova, A. S. Sergeev, et al., Phys. Rev. Lett., 108, 105101 (2012).

    Article  ADS  Google Scholar 

  25. A. A. Kuraev, High-Power Microwave Devices: Methods of Analyzing and Optimizing Their Parameters [in Russian], Radio i Svyaz’, Moscow (1986).

    Google Scholar 

  26. V. L. Bratman, Yu. K. Kalynov, and A. E. Fedotov, Tech. Phys., 43, No. 10, 1219 (1998).

    Article  Google Scholar 

  27. T. Idehara, I. Ogawa, S. Mitsudo, et al., IEEE Trans. Plasma Sci., 32, No. 3, 903 (2004).

    Article  ADS  Google Scholar 

  28. V. L. Bratman, Yu. K. Kalynov, and V. N. Manuilov, Phys. Rev. Lett., 102, No. 24, 245101 (2009).

    Article  ADS  Google Scholar 

  29. V. Bratman, M. Glyavin, T. Idehara, et al., Int. J. IEEE Trans. Plasma Sci., 37, No. 1, 36 (2009).

    Article  ADS  Google Scholar 

  30. V. L. Bratman, A. G. Litvak, and E. V. Suvorov, Phys. Usp., 54, 837 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Zapevalov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 61, No. 4, pp. 305–314, April 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zapevalov, V.E. Non-Canonical Gyrotrons. Radiophys Quantum El 61, 272–280 (2018). https://doi.org/10.1007/s11141-018-9888-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-018-9888-1

Navigation