Skip to main content
Log in

Relationship Between the Polar Electrojet Dynamics and the Amplitude of ELF/VLF Signal from the Ionospheric Source in the Modulated Ionospheric Heating Experiment

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We consider the results of the experiment on the polar ionosphere heating by a high-power modulated HF wave conducted by the AARI at the EISCAT/heating facility in October 2016. The data on joint processing of the values of the equivalent polar electrojet current above the heated ionosphere region retrieved by the IMAGE network of ground-based stations and the amplitudes of a signal of the horizontal component of the magnetic field from an ionospheric source at the modulation frequency recorded in the PGI network of high-latitude stations are presented. The events with a strong positive correlation between the magnetic field amplitude variations and the polar electrojet current variations are considered. It is shown that if the direction of the current changes from eastward to northward, correlation between the current variations and magnetic field variations almost disappears at a modulation frequency of 3017 Hz. Temporal and spatial variations of the coefficient of linear regression of the amplitude of the horizontal magnetic-field component with respect to the electrojet current are analyzed. In the transition from day to night, which is accompanied by the electrojet current decrease, the regression slope increases, and it decreases with increasing distance between the heater and the observation point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. G. Getmantsev, N. A. Zuikov, D. S. Kotik, et al., JETP Lett., 20, No. 4, 101 (1974).

    ADS  Google Scholar 

  2. D. S. Kotik and V. Yu. Trakhtengerts, JETP Lett., 21, No. 2. 51 (1975).

  3. R. A. Greenwald, W. Weiss, E. Nielsen, et al., Radio Sci., 13, No. 6, 1021 (1978).

    Article  ADS  Google Scholar 

  4. E. Nielsen, M. Bruns, I. Pardowitz, et al., Geophys. Res. Lett., 26, No. 1, 21 (1999).

    Article  ADS  Google Scholar 

  5. https://www.eiscat.se/eiscat3d.

  6. Y. Kamide, A. D. Richmond, and S. Matsushita, J. Geophys. Res., 86, No. A2, 801 (1982).

    Article  ADS  Google Scholar 

  7. G. V. Haines, Comp. Geosci., 14, No. 4, 413 (1988).

    Article  Google Scholar 

  8. O. Amm and A. Viljanen, Earth Planets Space, 51, No. 6, 431 (1999).

    Article  ADS  Google Scholar 

  9. A. Pulkkinen, O. Amm, and A. Viljanen, J. Geophys. Res., 108, No. A2, 1053 (2003).

    Article  Google Scholar 

  10. J. A. Fejer, J. Atmos. Terr. Phys., 32, No. 4, 597 (1970).

    Article  ADS  Google Scholar 

  11. D. B. Newman and A. J. Ferraro, J. Geophys. Res., 81, No. 13, 2442 (1976).

    Article  ADS  Google Scholar 

  12. J. D. Mathews, J. K. Breakall, and S. Ganguly, J. Geophys. Res., 44, No. 5, 441 (1982).

    Google Scholar 

  13. I. N. Kapustin, R. A. Pertsovsky, A. N. Vasiliev, et al., JETP Lett., 25, No. 5, 228 (1977).

    ADS  Google Scholar 

  14. M. T. Rietveld, H. Kopka, E. Nielsen, et al., J. Geophys. Res., 88, No. A3, 2140 (1983).

    Article  ADS  Google Scholar 

  15. M. T. Rietveld, H.-P. Mauelshagen, P. Stubbe, et al., J. Geophys. Res., 92, No. A8, 8707 (1987).

    Article  ADS  Google Scholar 

  16. G. Jin, M. Spasojevic, and U. S. Inan, J. Geophys. Res., 114, No. A8, A08301 (2009).

    Article  ADS  Google Scholar 

  17. E. I. Tanskanen, J. Geophys. Res., 114, No. A5, A05204 (2009).

    Article  ADS  Google Scholar 

  18. O. M. Lebed’, Yu. V. Fedorenko, N. F. Blagoveshchenskaya, et al., Geomag. Aeron., 57, No. 6, 698 (2017).

    Article  Google Scholar 

  19. N. G. Lehtinen and U. S. Inan, J. Geophys. Res., 113, No. A6, A06301 (2008).

    Article  ADS  Google Scholar 

  20. A. V. Larchenko, O. M. Leved’, and Yu. V. Fedorenko, J. Commun. Tech. Electron., 60, No. 8, 829 (2015).

    Article  Google Scholar 

  21. S. V. Pilgaev, A. V. Larchenko, M. V. Filatov, et al., Trudy Kolsk. Nauch. Tsentra RAN, 32, No. 6, 113 (2015).

    Google Scholar 

  22. S. V. Pilgaev, A. V. Larchenko, M. V. Filatov, et al., Instr. Exp. Tech., 61, No. 6, 809 (2018).

    Article  Google Scholar 

  23. T. Korja, M. Engels, and A. A. Zhamaletdinov, Earth Planets Space, 54, No. 5, 535 (2002).

    Article  ADS  Google Scholar 

  24. Yu. Fedorenko, E. Tereshchenko, S. Pilgaev, et al., Radio Sci., 49, No. 12, 254 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Larchenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 62, No. 6, pp. 429–439, June 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larchenko, A.V., Lebed’, O.M., Blagoveshchenskaya, N.F. et al. Relationship Between the Polar Electrojet Dynamics and the Amplitude of ELF/VLF Signal from the Ionospheric Source in the Modulated Ionospheric Heating Experiment. Radiophys Quantum El 62, 385–394 (2019). https://doi.org/10.1007/s11141-019-09985-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-019-09985-8

Navigation