Skip to main content
Log in

Variations of the Ionospheric Plasma Parameters Observed by the Ionosonde and Magnetic Station in the Range of Periods of Planetary Waves

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—Variations of the geomagnetic field and F2-layer critical frequency in the range of periods of planetary waves in winter season are analyzed. The measurements were conducted by a magnetometer and a vertical radio sounding ionosonde at the nearby Belsk and Warsaw stations and provided the records of the ionospheric current variations in the lower ionosphere and plasma density variations in the upper ionosphere, respectively. Spectral estimation is carried out for the winter seasons of 2018–2019 and 2014–2015 when solar activity was low and high, respectively. It is established that practically synchronous variations in the above range of period are present in the records by the ground magnetic station and in the ionosonde measurements of the F2 layer critical frequency. The spectra of the time variations of the geomagnetic field and F2-layer critical frequency in the period range of planetary waves in winter season contain the harmonic components associated with solar activity and with quasi-16-day and quasi-10-day planetary waves. The mechanism of the formation of the 16- and 10-day variations in the upper ionosphere is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. INTERMAGNET (International RealTime Magnetic Observatory Network) website. http://www.intermagnet.org.

  2. Space Research Center of the Polish Academy of Sciences website. http://www.rwc.cbk.waw.pl.

REFERENCES

  1. Andreev, V.S., Teoriya nelineinykh elektricheskikh tsepei: Uchebnik dlya vuzov (Theory of Nonlinear Electrical Circuits: Textbook for Universities), Moscow: Radio i svyaz’, 1982.

  2. Apostolov, E.M., Altadill, D., and Alberca, L., Characteristics of quasi-2-day oscillations in the foF2 at northern middle latitudes, J. Geophys. Res., 1995, vol. 100, pp. 12163–12171.

    Article  Google Scholar 

  3. Charney, J.G. and Drazin, P.G., Propagation of planatary-scale disturbances from the lower into the upper atmosphere, J. Geophys. Res., 1961, vol. 66, pp. 83–109.

    Article  Google Scholar 

  4. Danilov, A.D., Kazimirovskii, E.S., Vergasova, G.V., and Khachikyan, G.Ya., Meteorologicheskie effekty v ionosphere (Meteorological Effects in the Ionosphere), Leningrad: Gidrometeoizdat, 1987.

  5. Deng, W., Salah, J.E., Clark, R.R., et al., Coordinated global radar observations of tidal and planetary waves in the mesosphere and lower thermosphere during January 20–30, 1993, J. Geophys. Res., 1997, vol. 102, no. A4, pp. 7307–7318.

    Article  Google Scholar 

  6. Enell, C-F., Kozlovsky, A., Turunen, T., Ulich, T., Välitalo, S., Scotto, C., and Pezzopane, M., Comparison between manual scaling and Autoscala automatic scaling applied to Sodankylä Geophysical Observatory ionograms, Geosci. Instrum., Methods Data Syst., 2016, vol. 5, pp. 53–64. https://doi.org/10.5194/gi-5-53-2016

    Article  Google Scholar 

  7. Forbes, J.M. and Leveroni, S., Quasi 16-day oscillation of the ionosphere, Geophys. Res. Lett., 1992, vol. 19, pp. 981–984.

    Article  Google Scholar 

  8. Forbes, J.M. and Zhang, X., Quasi 2 day oscillation of the ionosphere: a statistical study, J. Atmos. Sol.-Terr. Phys., 1997, vol. 59, pp. 1025–1034.

    Article  Google Scholar 

  9. Forbes, J.M., Palo, S.E., and Zhang, X., Variability of the ionosphere, J. Atmos. Sol.-Terr. Phys., 2000, vol. 62, no. 8, pp. 685–693.

    Article  Google Scholar 

  10. Fraser, G., The 5-day wave and ionospheric absorption, J. Atmos. Terr. Phys., 1977, vol. 39, no. 1, pp. 121–124.

    Article  Google Scholar 

  11. Hagan, M.E., Forbes, J.M., and Vial, F., Numerical investigation of the propagation of the quasi-two-day wave into the lower thermosphere, J. Geophys. Res., 1993, vol. 98, pp. 23193–23205.

    Article  Google Scholar 

  12. Jankowski, J., Marianiuk, J., Ruta, A., Sucksdorff, C., and Kivinen, M., Long-term stability of a torque-balance variometer with photoelectric converters in observatory practice, Surv. Geophys., 1984, vol. 6, nos. 3–4, pp. 367–380.

    Article  Google Scholar 

  13. Kelley, M.C., The Earth’s Ionosphere: Plasma Physics and Electrodynamics, San Diego: Academic Press, 1989.

    Google Scholar 

  14. Kohsiek, A., Glassmeier, K.H., and Hirooka, T., Periods of planetary waves in geomagnetic variations, Ann. Geophys., 1995, vol. 13, pp. 168–176.

    Article  Google Scholar 

  15. Lawrence, A.R. and Jarvis, M.J., Initial comparisons of planetary waves in the stratosphere, mesosphere and ionosphere over Antarctica, Geophys. Res. Lett., 2001, vol. 28, pp. 203–206.

    Article  Google Scholar 

  16. Lomb, N.R., Least-squares frequency analysis of unequally spaced data, Astrophys. Space Sci., 1976, vol. 39, pp. 447–462.

    Article  Google Scholar 

  17. Mochalov, V. and Mochalova, A., Extraction of ionosphere parameters in ionograms using deep learning, Book Abstr. X Anniv. Int. Conf. “Solar-Terrestrial Relations and Physics of Earthquake Precursors, Paratunka, 2019, Petropavlovsk-Kamchatskiy: IKIR FEB RAS, 2019, p. 133. https://doi.org/10.1051/e3sconf/201912701004

  18. Perrone, L., Mikhailov, A., Cesaroni, C., Alfonsi, L., De Santis, A., Pezzopane, M., and Scotto, C., Long-term variations of the upper atmosphere parameters on Rome ionosonde observations and their interpretation, J. Space Weather Space Clim., 2017, vol. 7, no. 5, Paper ID A21. https://doi.org/10.1051/swsc/2017021

  19. Pezzopane, M., Scotto, C., Stanislawska, I., and Juchnikowski, G., Autoscala applied at the Ionospheric Station of Warsaw, Ionosonde Network Advisory Group Bulletin on the Web, INAG-69, 2008. http://www.sws.bom.gov.au/IPSHosted/ INAG/web-69/2008/inag_warsaw.pdf

  20. Piggott, W.R. and Rawer, K., URSI Handbook of Ionogram Interpretation and Reduction, Amsterdam: Elsevier, 1961.

    Google Scholar 

  21. Riabova, S., Features of geomagnetic field variations midlatitude observatories in range of period and halfperiod of Carrington, Proc. 20th Sci. Appl. Res. Conf. on Oil and Gas Geological Exploration and Development “Geomodel 2018,” Gelendzhik, 2018, Houten, Netherlands: European Association of Geoscientists and Engineers (EAGE), 2018, pp. 574–578. http://earthdoc.eage.org/publication/publicationdetails/?publication =94171

  22. Riabova, S.A., Geomagnetic diurnal variation at Mikhnevo geophysical observatory, in Processes in GeoMedia, Chaplina, T., Ed., Springer Geology Ser., vol. II, Cham: Springer, 2021, pp. 389–398.

    Google Scholar 

  23. Riabova, S.A. and Shalimov, S.L., Features of geomagnetic variations in the period range from 12 to 17 days according to the Mikhnevo Observatory, Proc. SPIE, vol. 11560: 26th Int. Symp. on Atmospheric and Ocean Optics, Atmospheric Physics, Moscow, 2020, Bellingham: SPIE, 2020, Paper ID 115607J. https://doi.org/10.1117/12.2575699

  24. Riabova, S.A. and Shalimov, S.L., On the geomagnetic variations observed on the Earth’s surface in the period range of planetary waves, Izv. Phys. Solid Earth, 2021, vol. 57, no. 1, pp. 46–53.

    Article  Google Scholar 

  25. Riabova, S.A. and Spivak, A.A., Geomagnitnye variatsii v pripoverkhnostnoi zone Zemli (Geomagnetic Variations in the Near-Surface Zone of the Earth), Moscow: Grafiteks, 2019.

  26. Rishbath, H. and Garriott, O.K., Introduction to Ionospheric Physics, International Geophysics Ser., vol. 14, New York: Academic Press, 1969.

  27. Salby, M.L., Survey of planetary-scale traveling waves: the state of theory and observations, Rev. Geophys. Space Phys., 1984, vol. 22, pp. 209–236.

    Article  Google Scholar 

  28. Scargle, J.D., Studies in astronomical time series analysis II. Statistical aspects of spectral analysis of unevenly sampled data, Astrophys. J., 1982, vol. 263, no. 2, pp. 835–853.

    Article  Google Scholar 

  29. Scotto, C., Electron density profile calculation technique for Autoscala ionogram analysis, Adv. Space Res., 2009, vol. 44, pp. 756–766.

    Article  Google Scholar 

  30. Scotto, C., Pezzopane, M., and Zolesi, B., Estimating the vertical electron density profile from an ionogram: On the passage from true to virtual heights via the target function method, Radio Sci., 2012, vol. 47, no. 1, Paper ID RS1007. https://doi.org/10.1029/2011RS004833

  31. Serebryakov, B.E., Study of processes in the thermosphere during geomagnetic disturbances, Geomagn. Aeron., 1982, vol. 22, no. 5, pp. 776–781.

    Google Scholar 

  32. Shalimov, S.L., Atmosfernye volny v plazme ionosfery (Atmospheric Waves in the Ionospheric Plasma), Moscow: IFZ RAN, 2018.

  33. Shalimov, S.L., Lapshin, V.M., and Haldoupis, C., Structure of planetary disturbances of the mid-latitude ionosphere according to observations of GPS satellites, Cosmic Res., 2006, vol. 44, no. 6, pp. 463–467.

    Article  Google Scholar 

  34. Wakai, N., Ohyama, H., and Koizumi, T., Manual of Ionogram Scaling, 3rd ed., Radio Research Laboratory, Ministry of Posts and Telecommunications, Japanese Government, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Riabova or S. L. Shalimov.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riabova, S.A., Shalimov, S.L. Variations of the Ionospheric Plasma Parameters Observed by the Ionosonde and Magnetic Station in the Range of Periods of Planetary Waves. Izv., Phys. Solid Earth 57, 927–934 (2021). https://doi.org/10.1134/S1069351321060069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351321060069

Keywords:

Navigation