Skip to main content
Log in

Optimization of a High-Power Subterahertz Gyrotron Tunable in a Wide Frequency Range Allowing for the Limitations Imposed by the Magnetic System

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present a version of the frequency-tunable gyrotron operating in a wide frequency range (0.1–0.26 THz) with an output radiation power of up to 260 kW. Multilevel analysis and combined optimization of its electron-optical and electrodynamical systems are performed. The gyrotron is designed for operation with the JASTEC-10T100 cryomagnet or its analogs. Efficiency of single-stage recovery in this system is analyzed. A collector system is proposed, which is capable of collecting electron beams effectively during gyrotron operation in the entire specified frequency range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Bratman, A. G. Litvak, and E. V. Suvorov, Phys. Usp., 54, No. 8, 837 (2011).

    Article  ADS  Google Scholar 

  2. M. Yu. Glyavin, G. G. Denisov, V. E. Zapevalov, et al., Phys. Usp., 59, No. 6, 595 (2016).

    Article  ADS  Google Scholar 

  3. O. Dumbrajs, J. A. Heikkinen, and H. Zohm, Nuclear Fusion, 41, No. 7, 927 (2001).

    Article  ADS  Google Scholar 

  4. G. S. Nusinovich, Introduction to the Physics of Gyrotrons, The Johns Hopkins Univ. Press, Baltimore (2004).

    Google Scholar 

  5. G. S. Nusinovich, M. K. A. Thumm, and M. I. Petelin, J. Infrared, Millimeter, Terahertz Waves, 35, No. 4, 325 (2014).

    Article  Google Scholar 

  6. G. F. Brand, N. G. Douglas, M. Gross, et al., Int. J. Infrared and Millimeter Waves, 3, No. 5, 725 (1982).

    Article  ADS  Google Scholar 

  7. K. D. Hong, G. F. Brand, and T. Idehara, J. Applied Physics, 74, No. 8, 5250 (1993).

    Article  ADS  Google Scholar 

  8. T. Idehara, I. Ogawa, S. Mitsudo, et al., IEEE Trans. Plasma Sci., 27, No. 2, 340 (1999).

    Article  ADS  Google Scholar 

  9. V. E. Zapevalov, A. A. Bogdashov, G. G. Denisov, et al., Radiophys. Quantum Electron., 47, Nos. 5–6, 396 (2004).

    Article  ADS  Google Scholar 

  10. M. Thumm, A. Arnold, E. Borie, et al., Fusion Engineering and Design, 53, 407 (2001).

    Article  Google Scholar 

  11. K. Koppenburg, G. Dammertz, M. Kutze, et al., IEEE Trans. Elec. Dev., 48, No. 1, 101 (2001)

    Article  ADS  Google Scholar 

  12. S. Pan, C.-H. Du, X.-B. Qi, and P.-K. Liu, Scientific Reports, 7, No. 1, 7265 (2017).

    Article  ADS  Google Scholar 

  13. M. Yu. Glyavin, A. V. Chirkov, G. G. Denisov, et al., Rev. Sci. Instr., 86, No. 5, 054705 (2015).

    Article  ADS  Google Scholar 

  14. Sh. E. Tsimring, Introduction to High-Frequency Vacuum Electronics and Physics of Electron Beams [in Russian], Inst. Appl. Phys., Russ. Acad. Sci, Nizhny Novgorod (2012).

    Google Scholar 

  15. A. V. Chirkov, G. G. Denisov, A. N. Kuftin, et al., Tech. Phys. Lett., 33, No. 4, 350 (2007).

    Article  ADS  Google Scholar 

  16. A. V. Chirkov, G. G. Denisov, and A. N. Kuftin, Appl. Phys. Lett., 106, No. 26, 263501 (2015).

    Article  ADS  Google Scholar 

  17. O. P. Plankin and E. S. Semenov, Vestnik Novosib. Gos. Univ. Ser. Fiz., 8, No. 2, 44 (2013).

    Google Scholar 

  18. V. E. Zapevalov, A. N. Kuftin, and V. K. Lygin, Radiophys. Quantum Electron., 50, No. 9, 702 (2007).

    Article  ADS  Google Scholar 

  19. V. N. Manuilov and V. E. Semenov, Radiophys. Quantum Electron., 59, No. 1, 33 (2016).

    Article  ADS  Google Scholar 

  20. N. A. Zavolsky, V. E. Zapevalov, and M. A. Moiseev, Radiophys. Quantum Electron., 44, No. 4, 318 (2001).

    Article  Google Scholar 

  21. G. G. Denisov, M. Yu. Glyavin, A. P. Fokin, et al., Rev. Sci. Instr., 89, No. 8, 084702 (2018).

    Article  ADS  Google Scholar 

  22. A. Sh. Fix, V. A. Flyagin, A. L. Goldenbedg, et al., Int. J. Electronics, 57, No. 6, 821 (1984).

    Article  Google Scholar 

  23. K. Sakamoto, M. Tsuneoka, A. Kasugai, et al., Phys. Rev. Lett., 73, No. 26, 3532 (1994).

    Article  ADS  Google Scholar 

  24. V. E. Zapevalov, Yu. K. Kalynov, V. K. Lygin, et al., Radiophys. Quantum Electron., 49, No. 3, 185 (2006).

    Article  ADS  Google Scholar 

  25. M. Yu. Glyavin, G. G. Denisov, V. E. Zapevalov, et al., Radiophys. Quantum Electron., 58, No. 9, 649 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Zuev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 62, No. 4, pp. 309–318, April 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuev, A.S., Zapevalov, V.E., Plankin, O.P. et al. Optimization of a High-Power Subterahertz Gyrotron Tunable in a Wide Frequency Range Allowing for the Limitations Imposed by the Magnetic System. Radiophys Quantum El 62, 277–285 (2019). https://doi.org/10.1007/s11141-019-09976-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-019-09976-9

Navigation