Skip to main content
Log in

On Spatial Structuring of the F2 Layer Studied by the Satellite Radio Sounding of the Ionosphere Disturbed by High-Power HF Radio Waves

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present the results of studying the characteristics of the artificial plasma structures excited in the ionospheric F2 region modified by high-power HF radio waves. The experiments were carried out at the Sura heating facility using satellite radio sounding of the ionosphere. The plasma density profile was reconstructed with the highest possible spatial resolution for today, about 4 km. In a direction close to the magnetic zenith of the pump wave, the following phenomena were observed: the formation of a cavity with a 15% lower plasma density at the altitudes of the F2 layer and below; the formation of an area with plasma density increased by 12% at altitudes greater than 400 km. With a long-term quasiperiodic impact of the pump wave on the ionosphere, wavy large-scale electron-density perturbations (the meridional scale λx ≈ 130 km and the vertical scale λz ≈ 440 km) are also formed above the Sura facility. These perturbations can be due to the plasma density modulation by an artificial acoustic-gravity wave with a period of 10.6 m, which was formed by the heat source inside a large-scale cavity with low plasma density; there is generation of the electron density irregularities for the electrons with ΔNe/Ne ≈ 3% in the form of layers having the sizes 10–12 km along and about 24 km across the geomagnetic field, which are found both below and above the F2-layer maximum. The mechanisms of the formation of these plasma structures are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Gurevich, Phys. Usp., 50, No. 11, 1091 (2007).

    Article  ADS  Google Scholar 

  2. H. C. Carlson, V.B.Wickwar, and G. P.Mantas, J. Atmos. Terr. Phys., 44, No. 12, 1089 (1982).

    Article  ADS  Google Scholar 

  3. T. B. Leyser, B.Gustavsson, et al., Adv. Polar Upper Atmos. Res., 14, 1 (2000).

    Google Scholar 

  4. D. F. DuBois, A.H.Rose, and D.Russel, J. Geophys. Res., 95, A12, 21221 (1990).

    Article  ADS  Google Scholar 

  5. V. V.Vas’kov and A. V. Gurevich, Sov. Phys. JETP, 46, No. 3, 487 (1977).

    ADS  Google Scholar 

  6. T. R. Robinson, Phys. Reports, 179, Nos. 2–3, 79 (1989).

    Article  ADS  Google Scholar 

  7. S. M. Grach, N. A. Mityakov, and V.Yu.Trakhtengerts, Radiophys. Quantum Electron., 27, No. 9, 176 (1984).

    Article  Google Scholar 

  8. P.A.Bernhardt, C.A.Tepley, and L.M.Duncan, J. Geophys. Res., 94, No. A7, 9071 (1989).

    Article  ADS  Google Scholar 

  9. M. J.Kosch, M.T.Rietveld, T.Hagfors, and T.B. Leyser, Geophys. Res. Lett., 27, No. 17, 2817 (2000).

    Article  ADS  Google Scholar 

  10. A.Gurevich, E. Fremouw, J. Secan, and K. Zybin, Phys. Lett. A, 301, Nos. 3–4, 307 (2002).

    Article  ADS  Google Scholar 

  11. V. L. Frolov, N.V.Bakhmet’eva, et al., Phys. Usp., 50, No. 3, 315 (2007).

    Article  Google Scholar 

  12. V. L. Frolov, Soln.-Zemn. Fiz., 1, No. 2, 33 (2015).

    Google Scholar 

  13. L.M. Erukhimov, S.A.Metelev, E.N.Myasniukov, et al., Radiophys. Quantum Electron., 30, No. 2, 156 (1987).

    Article  ADS  Google Scholar 

  14. V. L. Frolov, L.M. Erukhimov, S.A.Metelev, and E. N. Sergeev, J. Atmos. Solar-Terr. Phys., 59, No. 18, 2317 (1997).

    Article  ADS  Google Scholar 

  15. E. N.Myasnikov and N. V.Murav’eva, Radiophys. Quantum Electron., 50, No. 8, 657 (2007).

    Article  ADS  Google Scholar 

  16. A. V. Gurevich, K.P. Zybin, H.C.Carlson, and T.Pedersen, Phys. Lett. A, 305, No. 5, 264 (2002).

    Article  ADS  Google Scholar 

  17. E.D.Tereshchenko, B. Z.Khudukon, T.Rietveld, and A.Brekke, Ann. Geophys., 16, No. 7, 812 (1998).

    Article  ADS  Google Scholar 

  18. E.D.Tereshchenko, B. Z.Khudukon, A.V.Gurevich, et al., Phys. Lett. A, 325, Nos. 5–6, 381 (2004).

    Article  ADS  Google Scholar 

  19. S. H. Francis, J. Atmos. Terr. Phys., 37, 1011 (1975).

    Article  ADS  Google Scholar 

  20. F. S. Johnson, W.B.Hanson, R. R.Hodges, et al., J. Geophys. Res., 100, No. A12, 23993 (1995).

    Article  ADS  Google Scholar 

  21. N. F. Blagoveshchenskaya, Geophysical Effects of Active Impacts in Near-Earth Space [in Russian], Gidrometeoizdat, St.Petersburg (2001), p. 82.

    Google Scholar 

  22. L. F.Chernogor and V. L. Frolov, Radiophys. Quantum Electron., 56, No. 4, 197 (2013).

    Article  ADS  Google Scholar 

  23. L. F.Chernogor and V. L. Frolov, Radiophys. Quantum Electron., 56, No. 5, 276 (2013).

    Article  ADS  Google Scholar 

  24. V.E.Kunitsyn, E. S.Andreeva, V. L. Frolov, et al., Radio Sci., 47, No. 3, RS0L15 (2012).

    Google Scholar 

  25. V. E. Kunitsyn and E.D.Tereshchenko, Ionospheric Tomography, Springer-Verlag, Berlin (2003).

    Book  Google Scholar 

  26. M. Markkanen, M. Lehtinen, T.Nygrén, et al., Ann. Geophysicae, 13, No. 12, 1277 (1995).

    Google Scholar 

  27. T. Nygrén, M.Markkanen, M. Lehtinen, et al., Radio Sci., 32, No. 6, 2359 (1997).

    Article  ADS  Google Scholar 

  28. V. E. Kunitsyn and E.D.Tereshchenko, Ionospheric Tomography [in Russian], Nauka, Moscow (1991).

    Google Scholar 

  29. E.D.Tereshchenko, B. Z.Khudukon, M.O.Kozlova, and T.Nygrén, Ann. Geophys., 17, No. 4, 508 (1999).

    Article  ADS  Google Scholar 

  30. I. F. Domnin, S.V. Panasenko, V. P.Uryadov, and L. F.Chernogor, Radiophys. Quantum Electron., 55, No. 4, 253 (2012).

    Article  ADS  Google Scholar 

  31. V. L. Frolov, V.O.Rapoport, E. A. Shorokhova, et al., Radiophys. Quantum Electron., 59, No. 3, 177 (2016).

    Article  ADS  Google Scholar 

  32. G. I. Grigor’ev, Radiophys. Quantum Electron., 18, No. 12, 1335 (1975).

    Article  ADS  Google Scholar 

  33. E. Mishin, E. Sutton, G. Milikh, et al., Geophys. Res. Lett., 39, No. 1, L11101 (2012).

    ADS  Google Scholar 

  34. B. N. Gershman, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 32, No. 12, 1571 (1989) [in Russian].

    ADS  Google Scholar 

  35. A.K. Fedorenko, Geomag. Aeron., 50, No. 1, 107 (2010).

    Article  Google Scholar 

  36. G. V. Lizunov and A.Yu. Leont’ev, Geomag. Aeron., 54, No. 6, 841 (2014).

    Article  Google Scholar 

  37. M.C.Kelley, T. L. Arce, J. Salowey, et al., J. Geophys. Res., 100, No. A9, 17367 (1995).

    Article  ADS  Google Scholar 

  38. F.T. Djuth, B. W. Reinisch, et al., Geophys. Res. Lett., 33, No. 4, L04107 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Frolov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 60, No. 8, pp. 680–691, August 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tereshchenko, E.D., Turyansky, V.A., Khudukon, B.Z. et al. On Spatial Structuring of the F2 Layer Studied by the Satellite Radio Sounding of the Ionosphere Disturbed by High-Power HF Radio Waves. Radiophys Quantum El 60, 609–617 (2018). https://doi.org/10.1007/s11141-018-9831-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-018-9831-5

Navigation