Skip to main content
Log in

Summation formulas for the products of the Frobenius–Euler polynomials

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

We present here a further investigation for the classical Frobenius–Euler polynomials. By making use of the generating function methods and summation transform techniques, we establish some summation formulas for the products of an arbitrary number of the classical Frobenius–Euler polynomials. The results presented here are generalizations of the corresponding known formulas for the classical Bernoulli polynomials and the classical Euler polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series, vol. 55. National Bureau of Standards, Washington, D.C. (1964). Reprinted by Dover Publications, New York, 1965

    MATH  Google Scholar 

  2. Agoh, T.: Convolution identities for Bernoulli and Genocchi polynomials. Electron. J. Comb. 21(1), P1–P65 (2015). Article ID P1.65

    MathSciNet  Google Scholar 

  3. Agoh, T., Dilcher, K.: Higher-order convolutions for Bernoulli and Euler polynomials. J. Math. Anal. Appl. 419, 1235–1247 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andrews, G.E.: Euler’s pentagonal number theorem. Math. Mag. 56, 279–284 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Andrews, G.E.: The Theory of Partitions. In: Rota, G.C. (ed.) Encyclopedia of Mathematics and Its Applications, vol. 2. Addison-Wesley, Reading (1976). Reprinted: Cambridge University Press, Cambridge, London and New York, 1998

    Google Scholar 

  6. Araci, S., Acikgoz, M.: On the von Staudt–Clausen’s theorem related to \(q\)-Frobenius–Euler numbers. J. Number Theory 159, 329–339 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bell, J.: A summary of Euler’s work on the pentagonal number theorem. Arch. Hist. Exact Sci. 64, 301–373 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carlitz, L.: Note on the integral of the product of several Bernoulli polynomials. J. Lond. Math. Soc. 34, 361–363 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carlitz, L.: A theorem on generalized Dedekind sums. Acta Arith. 11, 253–260 (1965)

    MathSciNet  MATH  Google Scholar 

  10. Carlitz, L.: The product of two Eulerian polynomials. Math. Mag. 36, 37–41 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carlson, B.C.: Special Functions of Applied Mathematics. Academic Press, New York (1977)

    MATH  Google Scholar 

  12. Comtet, L.: Advanced Combinatorics, The Art of Finite and Infinite Expansions. D. Reidel, Dordrecht (1974)

    MATH  Google Scholar 

  13. Dunne, G.V., Schubert, C.: Bernoulli number identities from quantum field theory and topological string theory. Commun. Number Theory Phys. 7, 225–249 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frobenius, F.G.: Über die Bernoullischen Zahlen und die Eulerischen Polynome. Sitzungsber. K. Preußischen Akad. Wissenschaft, Berlin (1910)

    MATH  Google Scholar 

  15. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn. Oxford University, New York (1979)

    MATH  Google Scholar 

  16. He, Y., Zhang, W.-P.: Some sum relations involving Bernoulli and Euler polynomials. Integral Transform. Spec. Funct. 22, 207–215 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. He, Y., Wang, S.J.: New formulae of products of the Frobenius–Euler polynomials. J. Inequal. Appl. 2014, Article ID 261, 13 pp (2014)

  18. He, Y., Araci, S., Srivastava, H.M., Acikgoz, M.: Some new identities for the Apostol–Bernoulli polynomials and the Apostol–Genocchi polynomials. Appl. Math. Comput. 262, 31–41 (2015)

    MathSciNet  Google Scholar 

  19. Kim, D.S., Kim, T., Lee, S.-H., Kim, Y.-H.: Some identities for the products of two Bernoulli and Euler polynomials. Adv. Differ. Equ. 2012, Article ID 95, 14 pp (2012)

  20. Kim, D.S., Kim, T.: Some new identities of Frobenius–Euler numbers and polynomials. J. Inequal. Appl. 2012, Article ID 307, 10 pp (2012)

  21. Kim, D.S., Kim, T., Mansour, T.: Euler basis and the product of several Bernoulli and Euler polynomials. Adv. Stud. Contemp. Math. 24, 535–547 (2014)

    MATH  Google Scholar 

  22. Kim, D.S., Kim, T.: A study on the integral of the product of several Bernoulli polynomials. Rocky Mt. J. Math. 44, 1251–1263 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kim, D.S., Kim, T.: Identities arising from higher-order Daehee polynomials bases. Open Math. 13, 196–208 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Kim, T.: Symmetry of power sum polynomials and multivariate fermionic \(p\)-adic invariant integral on \(\mathbb{Z}_{p}\). Russ. J. Math. Phys. 16, 93–96 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kim, T.: An identity of the symmetry for the Frobenius–Euler polynomials associated with the fermionic \(p\)-adic invariant \(q\)-integrals on \(\mathbb{Z}_{p}\). Rocky Mt. J. Math. 41, 239–247 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kim, T.: Identities involving Frobenius–Euler polynomials arising from non-linear differential equations. J. Number Theory 132, 2854–2865 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kim, T., Choi, J.: A note on the product of Frobenius–Euler polynomials arising from the \(p\)-adic integral on \(\mathbb{Z}_{p}\). Adv. Stud. Contemp. Math. 22, 215–223 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Kim, T., Lee, B., Lee, S.-H., Rim, S.-H.: Some identities for the Frobenius–Euler numbers and polynomials. J. Comput. Anal. Appl. 15, 544–551 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Kim, T., Mansour, T.: Umbral calculus associated with Frobenius-type Eulerian polynomials. Russ. J. Math. Phys. 21, 484–493 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kim, T.: Some properties on the integral of the product of several Euler polynomials. Quaest. Math. 38(4), 553–562 (2015). doi:10.2989/16073606.2014.981688

    Article  MathSciNet  MATH  Google Scholar 

  31. Nielsen, N.: Traité élémentaire des nombres de Bernoulli. Gauthier-Villars, Paris (1923)

    MATH  Google Scholar 

  32. Pan, H., Sun, Z.-W.: New identities involving Bernoulli and Euler polynomials. J. Comb. Theory Ser. A 11, 156–175 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rehman, A., Mubeen, S., Safdar, R., Sadiq, N.: Properties of \(k\)-beta function with several variables. Open Math. 13, 308–320 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Simsek, Y.: Generating functions for generalized Stirling type numbers, array type polynomials, Eulerian type polynomials and their applications. Fixed Point Theory Appl. 2013, Article ID 87, 28 pp (2013)

  35. Simsek, Y., Bayad, A., Lokesha, V.: \(q\)-Bernstein polynomials related to \(q\)-Frobenius–Euler polynomials, \(l\)-functions, and \(q\)-Stirling numbers. Math. Methods Appl. Sci. 35, 877–884 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Srivastava, H.M.: Some generalizations and basic (or \(q\)-) extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inf. Sci. 5, 390–444 (2011)

    MathSciNet  Google Scholar 

  37. Srivastava, H.M., Niukkanen, A.W.: Some Clebsch–Gordan type linearization relations and associated families of Dirichlet integrals. Math. Comput. Model. 37, 245–250 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Stanley, R.P.: Enumerative Combinatorics, vol. 1. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  39. Zhang, Y., Sun, Z.-W., Pan, H.: Symmetric identities for Euler polynomials. Graphs Comb. 26, 745–753 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serkan Araci.

Additional information

This work was supported by the Foundation for Fostering Talents in Kunming University of Science and Technology (Grant No. KKSY201307047) and the National Natural Science Foundation of P.R. China (Grant No. 11326050).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Araci, S. & Srivastava, H.M. Summation formulas for the products of the Frobenius–Euler polynomials. Ramanujan J 44, 177–195 (2017). https://doi.org/10.1007/s11139-016-9802-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-016-9802-4

Keywords

Mathematics Subject Classification

Navigation