Skip to main content
Log in

Perfect sampling of GI/GI/c queues

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

We introduce the first class of perfect sampling algorithms for the steady-state distribution of multi-server queues with general interarrival time and service time distributions. Our algorithm is built on the classical dominated coupling from the past protocol. In particular, we use a coupled multi-server vacation system as the upper bound process and develop an algorithm to simulate the vacation system backward in time from stationarity at time zero. The algorithm has finite expected termination time with mild moment assumptions on the interarrival time and service time distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Asmussen, S.: Applied Probability and Queues, 2nd edn. Springer, Berlin (2003)

    Google Scholar 

  2. Asmussen, S., Glynn, P., Thorisson, H.: Stationarity detection in the initial transient problem. ACM Trans. Model. Comput. Simul. (TOMACS) 2(2), 130–157 (1992)

    Article  Google Scholar 

  3. Blanchet, J., Chen, X.: Steady-state simulation of reflected Brownian motion and related stochastic networks (2013). arXiv preprint arXiv:1202.2062

  4. Blanchet, J., Dong, J.: Perfect sampling for infinite server and loss systems. Adv. Appl. Probab. 47(3), 761–786 (2014). Forthcoming

    Article  Google Scholar 

  5. Blanchet, J., Sigman, K.: On exact sampling of stochastic perpetuities. J. Appl. Probab. 48(A), 165–182 (2011)

    Article  Google Scholar 

  6. Blanchet, J., Wallwater, A.: Exact sampling for the stationary and time-reversed queues. ACM Trans. Model. Comput. Simul. (TOMACS) 25(4), 26:1–26:27 (2015)

    Article  Google Scholar 

  7. Chen, H., Yao, D.: Fundamentals of Queueing Networks: Performance, Asymptotics and Optimization, vol. 46. Springer, Berlin (2013)

    Google Scholar 

  8. Connor, S., Kendall, W.: Perfect simulation for a class of positive recurrent Markov chains. Ann. Appl. Probab. 17(3), 781–808 (2007)

    Article  Google Scholar 

  9. Connor, S., Kendall, W.: Perfect simulation of M/G/c queues. Adv. Appl. Probab. 47(4), 1039–1063 (2015)

    Article  Google Scholar 

  10. Corcoran, J., Tweedie, R.: Perfect sampling of ergodic Harris chains. Ann. Appl. Probab. 11(2), 438–451 (2001)

    Article  Google Scholar 

  11. Ensor, K., Glynn, P.: Simulating the maximum of a random walk. J. Stat. Plan. Inference 85, 127–135 (2000)

    Article  Google Scholar 

  12. Foss, S.: On the approximation of multichannel service systems. Sibirsk. Mat. Zh. 21(6), 132–140 (1980)

    Google Scholar 

  13. Foss, S., Chernova, N.: On optimality of the FCFS discipline in multiserver queueing systems and networks. Sib. Math. J. 42(2), 372–385 (2001)

    Article  Google Scholar 

  14. Foss, S., Konstantopoulos, T.: Lyapunov function methods. Lecture Notes. http://www2.math.uu.se/~takis/L/StabLDC06/notes/SS_LYAPUNOV.pdf (2006)

  15. Foss, S., Tweedie, R.: Perfect simulation and backward coupling. Stoch. Models 14, 187–203 (1998)

    Article  Google Scholar 

  16. Garmarnik, D., Goldberg, D.: Steady-state GI/GI/n queue in the Halfin–Whitt regime. Ann. Appl. Probab. 23, 2382–2419 (2013)

    Article  Google Scholar 

  17. Hillier, F.S., Lo, F.D.: Tables for multiple-server queueing systems involving Erlang distributions. Tech. Rep. 31, Department of Operations Research, Stanford University (1971)

  18. Kelly, F.: Reversibility and Stochastic Networks, vol. 40. Wiley, Chichester (1979)

    Google Scholar 

  19. Kendall, W.: Perfect simulation for the area-interaction point process. In: Accardi, L., Heyde, C.C. (eds.) Probability towards 2000, pp. 218–234. Springer, New York (1998)

    Chapter  Google Scholar 

  20. Kendall, W.: Geometric ergodicity and perfect simulation. Electron. Comm. Probab. 9, 140–151 (2004)

    Article  Google Scholar 

  21. Kendall, W., Møller, J.: Perfect simulation using dominating processes on ordered spaces, with application to locally stable point processes. Adv. Appl. Probab. 32(3), 844–865 (2000)

    Article  Google Scholar 

  22. Liu, Z., Nain, P., Towsley, D.: Sample path methods in the control of queues. Queueing Syst. 21(1–2), 293–335 (1995)

    Article  Google Scholar 

  23. Propp, J., Wilson, D.: Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Struct. Alg. 9, 223–252 (1996)

    Article  Google Scholar 

  24. Rubinstein, R., Kroese, D.: Simulation and the Monte Carlo method, vol. 707. Wiley, New York (2011)

    Google Scholar 

  25. Sigman, K.: Exact simulation of the stationary distribution of the FIFO M/G/c queue. J. Appl. Probab. 48A, 209–216 (2011)

    Article  Google Scholar 

  26. Sigman, K.: Exact sampling of the stationary distribution of the FIFO M/G/c queue: the general case for \(\rho <c\). Queueing Syst. 70, 37–43 (2012)

    Article  Google Scholar 

  27. Wolff, R.: An upper bound for multi-channel queues. J. Appl. Probab. 14, 884–888 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Blanchet.

Additional information

Support from NSF through the Grants CMMI-1538217, DMS-1320550 and DMS-1720433 is gratefully acknowledged.

Appendix: A list of selected notation

Appendix: A list of selected notation

Notation

Meaning

\(A_n:n\in {\mathbb {Z}}\backslash \{0\}\)

Interarrival time between the arrivals at \(T^0_n\) and \(T^{0,+}_n\) (Sect. 2.1)

\(D_n^0:n\in {\mathbb {Z}}\backslash \{0\}\)

Waiting time of the customer arriving at \(T^0_n\) in the vacation system (Sect. 2.1.2)

\(E_u(t;z):t\ge 0\)

Time elapsed since previous arrival at time \(u+t\) when the time elapsed since previous arrival at time u is the corresponding subvector of z, i.e., e (Sect. 2.2.1)

\(i(n):n\in {\mathbb {Z}}\backslash \{0\}\)

Label of the server who serves the customer arriving at \(T^0_n\) (Sect. 2.1.2)

\(M(t):t\ge 0\)

Running time maximum of process \(\{X(s):s\ge t\}\) (Sect. 4)

\(N^0_u(t):t\ge 0\)

Number of arrivals during \([u,u+t]\) (Sect. 2.1)

\(N^0(t)\)

Number of arrivals during [0, t] if \(t\ge 0\) or in [t, 0] if \(t<0\) (Sect. 2.1)

\(N^i_u(t):t\ge 0\)

Number of activities initiated by server i during \([u,u+t]\) (Sect. 2.1)

\(N^i(t)\)

Number of activities initiated by server i during [0, t] if \(t\ge 0\) or [t, 0] if \(t<0\) (Sect. 2.1)

\(Q_u(t;z):t\ge 0\)

Number of people waiting in queue at time \(u+t\) of a GI/GI/c queue that starts at time u and is initialized with z (Sect. 2.2.1)

\(Q_v(t)\)

Number of people waiting in queue in stationary vacation system at time t (Sect. 2.1.1)

\(R_u(t;z):t\ge 0\)

Ordered (non-decreasing) remaining service times of all c servers at time \(u+t\) of a GI/GI/c queue that starts at time u and is initialized with z (Sect. 2.2.1)

\(\{S^{(0)}_n:n\ge 0\}\)

Random walk with negative drift associated with the arrival renewal process (Sect. 4)

\(\{S^{(i)}_n:n\ge 0\}\)

Random walk with negative drift associated with the activity renewal process of server i (Sect. 4)

\(T^0_n:n\in {\mathbb {Z}}\backslash \{0\}\)

n-th (\((-n)\)-th) arrival time counting forward (backward) in time from time 0 (Sect. 2.1)

\(T^{0,+}_n:n\in {\mathbb {Z}}\backslash \{0\}\)

Next arrival time after \(T^0_n\) (Sect. 2.1)

\(T^{0,-}_n:n\in {\mathbb {Z}}\backslash \{0\}\)

Previous arrival time before \(T^0_n\) (Sect. 2.1)

\(T^i_n:n\in {\mathbb {Z}}\backslash \{0\}\)

n-th (\((-n)\)-th) activity initiation time of server i counting forward (backward) in time from time 0 (Sect. 2.1)

\(T^{i,+}_n:n\in {\mathbb {Z}}\backslash \{0\}\)

Next activity initiation time of server i after \(T^i_n\) (Sect. 2.1)

\(T^{i,-}_n:n\ge {\mathbb {Z}}\backslash \{0\}\)

Previous activity initiation time of server i before \(T^i_n\) (Sect. 2.1)

\(U^0(t)\)

Time until next arrival from time t (Sect. 2.2.2)

\(U^i(t)\)

Time until next activity initiated by server i from time t (Sect. 2.2.2)

U(t)

c-dimensional vector \(\left( U^1(t),\ldots ,U^c(t)\right) ^T\) (Sect. 2.2.2)

\(V_n:n\in {\mathbb {Z}}\backslash \{0\}\)

Service time of the customer who arrives at \(T^0_n\) (Sect. 2.1.1)

\(V^i_n:n\in {\mathbb {Z}}\backslash \{0\}\)

Length of the activity of server i that is initiated at \(T^i_n\) (Sect. 2.1)

\(W(n):n\in {\mathbb {Z}}\backslash \{0\}\)

Kiefer–Wolfowitz workload vector at time \(T^0_n\) of a stationary GI/GI/c queue (Sect. 2.2.1)

\(W_k\left( T_n^0;w\right) \): \(n\ge k\) and \(n,k\in {\mathbb {Z}}\backslash \{0\}\)

Kiefer–Wolfowitz workload vector at time \(T^0_n\) of a GI/GI/c queue which has its workload vector at time \(T^0_k\) being w (Sect. 2.2.1)

\(W_v(n):n\in {\mathbb {Z}}\backslash \{0\}\)

Analog Kiefer–Wolfowitz workload vector at time \(T^0_n\) of the stationary vacation system (Sect. 2.2.2)

\(W_v(n+):n\in {\mathbb {Z}}\backslash \{0\}\)

Analog Kiefer–Wolfowitz workload vector at time \(T^{0,+}_n\) of the stationary vacation system (Sect. 2.2.2)

X(t)

\(X_0(t)\) if \(t\ge 0\) or \(X_t(-t)\) if \(t<0\) (Sect. 2.1.1)

\(X_u(t):t\ge 0\)

\(N^0_u(t)-\sum _{i=1}^cN^i_u(t)\) (Sect. 2.1.1)

Z(t)

State vector of a stationary GI/GI/c queue at time t

\(Z_u(t;z):t\ge 0\)

State vector at time \(u+t\) of a GI/GI/c queue that starts at time u and is initialized with z (Sect. 2.2.1)

\(\sigma ^i_u(t):t\ge 0\)

Number of service initiations by server i during \([u,u+t]\) (Sect. 2.1.2)

\(\varPhi _j^i:j\ge 0,0\le i\le c\)

j-th downward “milestone” of random walk \(\{S^{(i)}_n:n\ge 0\}\) (Sect. 4)

\(\varUpsilon _j^i:j\ge 0,0\le i\le c\)

j-th upward “milestone” of random walk \(\{S^{(i)}_n:n\ge 0\}\) (Sect. 4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanchet, J., Dong, J. & Pei, Y. Perfect sampling of GI/GI/c queues. Queueing Syst 90, 1–33 (2018). https://doi.org/10.1007/s11134-018-9573-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-018-9573-2

Keywords

Mathematics Subject Classification

Navigation