Skip to main content

Application of Cold Plasma in Fruits and Vegetables

  • Chapter
  • First Online:
Applications of Cold Plasma in Food Safety
  • 891 Accesses

Abstract

Consumers’ demands for fresh fruits and vegetables have been increased over the last decades due to the pursuit of a healthy lifestyle. However, fresh produces are susceptible to microbial contamination, consequently shortening the shelf-life, which poses a challenge to the food industry. Cold plasma with abundant reactive species is considered as a promising decontamination technology against microorganisms. In this chapter, various factors (e.g., processing parameters, microbial characteristics, food properties) affecting the microbial inactivation efficacy of cold plasma were systematically summarized. Additionally, the effects of cold plasma on the quality attributes of fresh produce were provided in detail. The application of cold plasma for the inhibition of endogenous enzymatic activities in fruits and vegetables was also introduced. Furthermore, the existing challenges for the application of cold plasma on the fresh produce preservation were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aday MS, Temizkan R, BĂĽyĂĽkcan MB et al (2013) An innovative technique for extending shelf life of strawberry: ultrasound. LWT-Food Sci Technol 52(2):93–101

    Article  CAS  Google Scholar 

  • Agun L, Ahmad N, Redzuan N et al (2020) Sterilization of oyster mushroom crop residue substrate by using cold plasma technology. Mater Today Proc 39:903–906

    Article  Google Scholar 

  • Baier M, Ehlbeck J, Knorr D et al (2015) Impact of plasma processed air (PPA) on quality parameters of fresh produce. Postharvest Biol Technol 100:120–126

    Article  CAS  Google Scholar 

  • Bhide S, Salvi D, Schaffner DW et al (2017) Effect of surface roughness in model and fresh fruit systems on microbial inactivation efficacy of cold atmospheric pressure plasma. J Food Prot 80(8):1337–1346

    Article  PubMed  Google Scholar 

  • Bilek SE, TurantaĹź F (2013) Decontamination efficiency of high power ultrasound in the fruit and vegetable industry, a review. Int J Food Microbiol 166(1):155–162

    Article  PubMed  Google Scholar 

  • Boffetta P, Couto E, Wichmann J et al (2010) Fruit and vegetable intake and overall cancer risk in the European prospective investigation into Cancer and nutrition (EPIC). J Natl Cancer Inst 102(8):529–537

    Article  CAS  PubMed  Google Scholar 

  • Bovi GG, Frohling A, Pathak N et al (2019) Safety control of whole berries by cold atmospheric pressure plasma processing: a review. J Food Prot 82(7):1233–1243

    Article  CAS  PubMed  Google Scholar 

  • BuĂźler S, Ehlbeck J, SchlĂĽter OK (2017) Pre-drying treatment of plant related tissues using plasma processed air: impact on enzyme activity and quality attributes of cut apple and potato. Innov Food Sci Emerg Technol 40:78–86

    Article  Google Scholar 

  • Cui H, Ma C, Lin L (2016) Synergetic antibacterial efficacy of cold nitrogen plasma and clove oil against Escherichia coli O157: H7 biofilms on lettuce. Food Control 66:8–16

    Article  CAS  Google Scholar 

  • de Castro DRG, Mar JM, da Silva LS et al (2020) Dielectric barrier atmospheric cold plasma applied on camu-camu juice processing: effect of the excitation frequency. Food Res Int 131:109044

    Article  PubMed  Google Scholar 

  • de SĂŁo JosĂ© JFB, de Andrade NJ, Ramos AM et al (2014) Decontamination by ultrasound application in fresh fruits and vegetables. Food Control 45:36–50

    Article  Google Scholar 

  • Dong XY, Yang YL (2019) A novel approach to enhance blueberry quality during storage using cold plasma at atmospheric air pressure. Food Bioprocess Technol 12(8):1409–1421

    Article  CAS  Google Scholar 

  • Fernandes FA, Santos VO, Rodrigues S (2019) Effects of glow plasma technology on some bioactive compounds of acerola juice. Food Res Int 115:16–22

    Article  CAS  PubMed  Google Scholar 

  • Fernandez A, Noriega E, Thompson A (2013) Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology. Food Microbiol 33(1):24–29

    Article  CAS  PubMed  Google Scholar 

  • Fulcheri L, Fabry F, Takali S, Rohani V (2015) Three-phase AC arc plasma systems: a review. Plasma Chem Plasma Process 35(4):565–585

    Article  CAS  Google Scholar 

  • Garofulić IE, Jambrak AR, Milošević S et al (2015) The effect of gas phase plasma treatment on the anthocyanin and phenolic acid content of sour cherry Marasca (Prunus cerasus var. Marasca) juice. LWT Food Sci Technol 62(1):894–900

    Article  Google Scholar 

  • Go SM, Kim HS, Park MR et al (2020) Antibacterial effect of non-thermal atmospheric plasma against soft rot bacteria on paprika. LWT Food Sci Technol 117:108600

    Article  CAS  Google Scholar 

  • Han YX, Cheng JH, Sun DW (2019) Changes in activity, structure and morphology of horseradish peroxidase induced by cold plasma. Food Chem 301:125240

    Article  CAS  PubMed  Google Scholar 

  • Herceg Z, KovaÄŤević DB, Kljusurić JG et al (2016) Gas phase plasma impact on phenolic compounds in pomegranate juice. Food Chem 190:665–672

    Article  CAS  PubMed  Google Scholar 

  • Hertwig C, Leslie A, Meneses N et al (2017) Inactivation of Salmonella Enteritidis PT30 on the surface of unpeeled almonds by cold plasma. Innov Food Sci Emerg Technol 44:242–248

    Article  CAS  Google Scholar 

  • Huang YM, Hsieh SY, Hsu CL (2017) Application of non-thermal atmospheric plasma for blanching on sliced apple and Banana. Taiwanese J Agric Chem Food Sci 55(5):270–291

    Google Scholar 

  • Khan MSI, Lee EJ, Hong SI et al (2017) Feed gas effect on plasma inactivation mechanism of Salmonella typhimurium in onion and quality assessment of the treated sample. Sci Rep 7(1):1–11

    Article  Google Scholar 

  • Kong Q, Wu A, Qi W et al (2014) Effects of electron-beam irradiation on blueberries inoculated with Escherichia coli and their nutritional quality and shelf life. Postharvest Biol Technol 95:28–35

    Article  Google Scholar 

  • KovaÄŤević DB, Kljusurić JG, Putnik P et al (2016) Stability of polyphenols in chokeberry juice treated with gas phase plasma. Food Chem 212:323–331

    Article  Google Scholar 

  • Lacombe A, Niemira BA, Gurtler JB et al (2015) Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiol 46:479–484

    Article  CAS  PubMed  Google Scholar 

  • Lacombe A, Niemira BA, Gurtler JB et al (2017) Nonthermal inactivation of norovirus surrogates on blueberries using atmospheric cold plasma. Food Microbiol 63:1–5

    Article  CAS  PubMed  Google Scholar 

  • Lafarga T, Colás-MedĂ  P, AbadĂ­as M et al (2019) Strategies to reduce microbial risk and improve quality of fresh and processed strawberries: a review. Innov Food Sci Emerg Technol 52:197–212

    Article  CAS  Google Scholar 

  • Liu C, Li X, Chen H (2015) Application of water-assisted ultraviolet light processing on the inactivation of murine norovirus on blueberries. Int J Food Microbiol 214:18–23

    Article  CAS  PubMed  Google Scholar 

  • Lu Q, Liu D, Song Y et al (2014) Inactivation of the tomato pathogen Cladosporium fulvum by an atmospheric-pressure cold plasma jet. Plasma Process Polym 11(11):1028–1036

    Article  CAS  Google Scholar 

  • Lung HM, Cheng YC, Chang YH et al (2015) Microbial decontamination of food by electron beam irradiation. Trends Food Sci Technol 44(1):66–78

    Article  CAS  Google Scholar 

  • Mari M, Bautista-Baños S, Sivakumar D (2016) Decay control in the postharvest system: role of microbial and plant volatile organic compounds. Postharvest Biol Technol 122:70–81

    Article  CAS  Google Scholar 

  • Matan N, Puangjinda K, Phothisuwan S et al (2015) Combined antibacterial activity of green tea extract with atmospheric radio-frequency plasma against pathogens on fresh-cut dragon fruit. Food Control 50:291–296

    Article  CAS  Google Scholar 

  • Matsusaka S (2019) Control of particle charge by atmospheric pressure plasma jet (APPJ): a review. Adv Powder Technol 30(12):2851–2858

    Article  CAS  Google Scholar 

  • Min SC, Roh SH, Niemira BA et al (2018) In-package atmospheric cold plasma treatment of bulk grape tomatoes for microbiological safety and preservation. Food Res Int 108:378–386

    Article  CAS  PubMed  Google Scholar 

  • Mir SA, Siddiqui MW, Dar BN et al (2019) Promising applications of cold plasma for microbial safety, chemical decontamination and quality enhancement in fruits. J Appl Microbiol 14541:1–12

    Google Scholar 

  • Misra NN, Moiseev T, Patil S et al (2014a) Cold plasma in modified atmospheres for post-harvest treatment of strawberries. Food Bioprocess Technol 7(10):3045–3054

    Article  CAS  Google Scholar 

  • Misra NN, Patil S, Moiseev T et al (2014b) In-package atmospheric pressure cold plasma treatment of strawberries. J Food Eng 125:131–138

    Article  CAS  Google Scholar 

  • Misra NN, Pankaj SK, Frias JM et al (2015) The effects of nonthermal plasma on chemical quality of strawberries. Postharvest Biol Technol 110:197–202

    Article  CAS  Google Scholar 

  • Misra NN, Pankaj SK, Segat A, Ishikawa K (2016) Cold plasma interactions with enzymes in foods and model systems. Trends Food Sci Technol 55:39–47

    Article  CAS  Google Scholar 

  • Olaimat AN, Holley RA (2012) Factors influencing the microbial safety of fresh produce: a review. Food Microbiol 32(1):1–19

    Article  CAS  PubMed  Google Scholar 

  • Oyebode O, Gordon-Dseagu V, Walker A et al (2014) Fruit and vegetable consumption and all-cause, cancer and CVD mortality: analysis of health survey for England data. J Epidemiol Community Health 68(9):856–862

    Article  PubMed  Google Scholar 

  • Pankaj SK, Wan Z, Colonna W et al (2017) Effect of high voltage atmospheric cold plasma on white grape juice quality. J Sci Food Agric 97(12):4016–4021

    Article  CAS  PubMed  Google Scholar 

  • Pasquali F, Stratakos AC, Koidis A et al (2016) Atmospheric cold plasma process for vegetable leaf decontamination: a feasibility study on radicchio (red chicory, Cichorium intybus L.). Food Control 60:552–559

    Article  CAS  Google Scholar 

  • Patange A, Boehm D, Ziuzina D et al (2019) High voltage atmospheric cold air plasma control of bacterial biofilms on fresh produce. Int J Food Microbiol 293:137–145

    Article  CAS  PubMed  Google Scholar 

  • Perni S, Liu DW, Shama G et al (2008) Cold atmospheric plasma decontamination of the pericarps of fruit. J Food Prot 71(2):302–308

    Article  CAS  PubMed  Google Scholar 

  • Ramazzina I, Berardinelli A, Rizzi F et al (2015) Effect of cold plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit. Postharvest Biol Technol 107:55–65

    Article  CAS  Google Scholar 

  • Rana S, Mehta D, Bansal V et al (2020) Atmospheric cold plasma (ACP) treatment improved in-package shelf-life of strawberry fruit. J Food Sci Technol Mys 57(1):102–112

    Article  CAS  Google Scholar 

  • Sarangapani C, O'Toole G, Cullen PJ et al (2017) Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innov Food Sci Emerg Technol 44:235–241

    Article  CAS  Google Scholar 

  • Sarangapani C, Patang A, Bourke P et al (2018) Recent advances in the application of cold plasma technology in foods. Annu Rev Food Sci Technol 9:609–629

    Article  CAS  PubMed  Google Scholar 

  • Sarvikivi E, Roivainen M, Maunula L et al (2012) Multiple norovirus outbreaks linked to imported frozen raspberries. Epidemiol Infect 140(2):260–267

    Article  CAS  PubMed  Google Scholar 

  • Silveira MR, Coutinho NM, Rocha RS et al (2019) Guava flavored whey-beverage processed by cold plasma: physical characteristics, thermal behavior and microstructure. Food Res Int 119:564–570

    Article  CAS  PubMed  Google Scholar 

  • Stoffels E, Sakiyama Y, Graves DB (2008) Cold atmospheric plasma: charged species and their interactions with cells and tissues. IEEE Trans Plasma Sci 36(4):1441–1457

    Article  CAS  Google Scholar 

  • Tappi S, Berardinelli A, Ragni L et al (2014) Atmospheric gas plasma treatment of fresh-cut apples. Innov. Food Sci Emerg Technol 21:114–122

    Article  CAS  Google Scholar 

  • Tappi S, Gozzi G, Vannini L et al (2016) Cold plasma treatment for fresh-cut melon stabilization. Innov. Food Sci Emerg Technol 33:225–233

    Article  CAS  Google Scholar 

  • Thirumdas R, Kothakota A, Annapure U et al (2018) Plasma activated water (PAW): chemistry, physico-chemical properties, applications in food and agriculture. Trends Food Sci Technol 77:21–31

    Article  CAS  Google Scholar 

  • Timmons C, Pai K, Jacob J et al (2018) Inactivation of Salmonella enterica, Shiga toxin-producing Escherichia coli, and Listeria monocytogenes by a novel surface discharge cold plasma design. Food Control 84:455–462

    Article  CAS  Google Scholar 

  • Tournas VH, Katsoudas E (2005) Mould and yeast flora in fresh berries, grapes and citrus fruits. Int J Food Microbiol 105(1):11–17

    Article  CAS  PubMed  Google Scholar 

  • Vardar C, Ilhan K, Karabulut OA (2012) The application of various disinfectants by fogging for decreasing postharvest diseases of strawberry. Postharvest Biol Technol 66:30–34

    Article  CAS  Google Scholar 

  • Wang RX, Nian WF, Wu HY et al (2012) Atmospheric-pressure cold plasma treatment of contaminated fresh fruit and vegetable slices: inactivation and physiochemical properties evaluation. Eur Phys J D 66(10):276

    Article  Google Scholar 

  • Won MY, Lee SJ, Min SC (2017) Mandarin preservation by microwave-powered cold plasma treatment. Innov Food Sci Emerg Technol 39:25–32

    Article  CAS  Google Scholar 

  • Zhou D, Wang Z, Tu S et al (2019) Effects of cold plasma, UV-C or aqueous ozone treatment on Botrytis cinerea and their potential application in preserving blueberry. J Appl Microbiol 127(1):175–185

    Article  CAS  PubMed  Google Scholar 

  • Zitong ZHAO, Xiangyou WANG, Tingjun MA, Yunjin SUN (2020) Optimization of plasma-processed air (PPA) inactivation of Escherichia coli in button mushrooms for extending the shelf life by response surface methodology. Plasma Sci Technol 22(6):065501

    Article  Google Scholar 

  • Ziuzina D, Patil S, Cullen PJ et al (2014) Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiol 42:109–116

    Article  CAS  PubMed  Google Scholar 

  • Ziuzina D, Han L, Cullen PJ, Bourke P (2015) Cold plasma inactivation of internalised bacteria and biofilms for Salmonella enterica serovar Typhimurium, Listeria monocytogenes and Escherichia coli. Int J Food Microbiol 210:53–61

    Article  PubMed  Google Scholar 

  • Zoroja J, Omejec D, Pejić Bach M (2017) Integrated model of traceability: tracking information for food safety. Poslovna izvrsnost 11(1):139–153

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Zhejiang University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, Y., Wang, C. (2022). Application of Cold Plasma in Fruits and Vegetables. In: Ding, T., Cullen, P., Yan, W. (eds) Applications of Cold Plasma in Food Safety. Springer, Singapore. https://doi.org/10.1007/978-981-16-1827-7_7

Download citation

Publish with us

Policies and ethics