Skip to main content
Log in

Chemical Composition, Fatty Acid Profile, Phenolic Compounds, and Antioxidant Activity of Raw and Germinated Chia (Salvia hispanica L.) Seeds

  • Research
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

The consumption of chia seeds has become popular due to their beneficial health properties and the germination of chia seeds seems to further enhance these properties. This study aimed to evaluate the changes in the nutritional composition of chia seeds after germination for 3 and 6 days. Chemical composition, fatty acid profile, phenolic content and antioxidant capacity were determined. The indices of lipid quality, atherogenicity, thrombogenicity, and the n-6/n-3 ratio were calculated. Chia sprouts presented a significant increase in minerals, proteins, and a reduction in total lipid content with maintenance of lipid quality. Total phenolic content decreased significantly as germination time increased, but there was a significant increase in the amount of rosmarinic acid. Chia sprouts showed a significant increase in antioxidant potential when compared to raw chia seeds. As a conclusion, the results of this study demonstrated that chia seed germination is a simple, economical, and short-term process capable of improving the nutritional composition of the seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data is available upon request.

References

  1. Kaur S, Bains K (2020) Chia (Salvia hispanica L.) – a rediscovered ancient grain, from Aztecs to food laboratories: a review. Nutr Food Sci 50(3):463–479. https://doi.org/10.1108/NFS-06-2019-0181

    Article  Google Scholar 

  2. Coelho MS, Salas-Mellado M (2014) Chemical characterization of chia (Salvia hispanica L.) for use in food products. J Food Nutr Res 2(5):263–269. https://doi.org/10.12691/jfnr-2-5-9

    Article  Google Scholar 

  3. Kulczyński B, Kobus-Cisowska J, Taczanowski M, Kmiecik D, Gramza-Michałowska A (2019) The chemical composition and nutritional value of chia seeds—current state of knowledge. Nutrients 11(6):1242. https://doi.org/10.3390/nu11061242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hrnčič MK, Ivanovski M, Cör D, Knez Ž (2020) Chia seeds (Salvia hispanica L.): an overview-phytochemical profile, isolation methods, and application. Molecules 25(1):11. https://doi.org/10.3390/molecules25010011

    Article  CAS  Google Scholar 

  5. Hernández-Pérez T, Valverde M, Orona-Tamayo D, Paredes-Lopez O (2020) Chia (Salvia hispanica): nutraceutical properties and therapeutic applications. Proceedings 53:17. https://doi.org/10.3390/proceedings2020053017

    Article  Google Scholar 

  6. Lara AR, Mesa-García MD, Medina KAD, Piné RQ, Casuso RA, Carretero AS, Huertas JR (2021) Assessment of the phytochemical and nutrimental composition of dark chia seed (Salvia hispanica L). Foods 10(12):3001. https://doi.org/10.3390/FOODS10123001

    Article  Google Scholar 

  7. Motyka S, Koc K, Ekiert H, Blicharska E, Czarnek K, Szopa A (2022) The current state of knowledge on Salvia hispanica and Salviae Hispanicae semen (chia seeds). Molecules 27(4):1207. https://doi.org/10.3390/molecules27041207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Waliat S, Arshad MS, Hanif H, Ejaz A, Khalid W, Kauser S, Al-Farga A (2023) A review on bioactive compounds in sprouts: extraction techniques, food application and health functionality. Int J Food Prop 26(1):647–665. https://doi.org/10.1080/10942912.2023.2176001

    Article  Google Scholar 

  9. Benincasa P, Falcinelli B, Lutts S, Stagnari F, Galieni A (2019) Sprouted grains: a comprehensive review. Nutrients 11(2):421. https://doi.org/10.3390/nu11020421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lynch H, Johnston C, Wharton C (2018) Plant-based diets: considerations for environmental impact, protein quality, and exercise performance. Nutrients 10(12):1841. https://doi.org/10.3390/nu10121841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Geng J, Li J, Zhu F, Chen X, Du B, Tian H, Li J (2022) Plant sprout foods: biological activities, health benefits, and bioavailability. J Food Biochem 46(3). https://doi.org/10.1111/jfbc.13777

  12. Miyahira RF, Lopes JO, Antunes AEC (2021) The use of sprouts to improve the nutritional value of food products: a brief review. Plant Foods Hum Nutr 76(2):143–152. https://doi.org/10.1007/s11130-021-00888-6

    Article  PubMed  Google Scholar 

  13. Warriner K, Smal B (2014) Microbiological safety of sprouted seeds: interventions and regulations. In: Matthews KR, Sapers GM, Gerba CP (eds) The produce contamination problem causes and solutions, 2nd edn. Academic Press, San Diego, pp 237–268

    Chapter  Google Scholar 

  14. ESSA (2016) Hygiene guideline for the production of sprouts and seeds for sprouting. European Sprouted Seeds Association. https://food.ec.europa.eu/system/files/2017-12/biosafety_fh_guidance_essa_sprouts-and-seeds_en.pdf Accessed 25 June 2023

  15. Abdel-Aty AM, Elsayed AM, Salah HA, Bassuiny RI, Mohamed SA (2021) Egyptian chia seeds (Salvia hispanica L.) during germination: upgrading of phenolic profile, antioxidant, antibacterial properties and relevant enzymes activities. Food Sci Biotechnol 30(5):723–734. https://doi.org/10.1007/s10068-021-00902-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Beltrán-Orozco M, del Martínez-Olguín C, del Robles-Ramírez A C (2020) Changes in the nutritional composition and antioxidant capacity of chia seeds (Salvia hispanica L.) during germination process. Food Sci Biotechnol 29(6):751–757. https://doi.org/10.1007/s10068-019-00726-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gómez-Favela MA, Gutiérrez-Dorado R, Cuevas-Rodríguez EO, Canizalez-Román VA, del Rosario León-Sicairos C, Milán-Carrillo J, Reyes-Moreno C (2017) Improvement of chia seeds with antioxidant activity, GABA, essential amino acids, and dietary fiber by controlled germination bioprocess. Plant Foods Hum Nutr 72(4):345–352. https://doi.org/10.1007/s11130-017-0631-4

  18. Cabrera-Santos D, Ordoñez-Salanueva CA, Sampayo-Maldonado S, Campos JE, Orozco-Segovia A, Flores-Ortiz CM (2021) Chia (Salvia hispanica l.) seed soaking, germination, and fatty acid behavior at different temperatures. Agriculture 11(6):498. https://doi.org/10.3390/agriculture11060498

    Article  CAS  Google Scholar 

  19. Salgado VDSCN, Zago L, Antunes AEC, Miyahira RF (2022) Chia (Salvia hispanica L.) seed germination: a brief review. Plant Foods Hum Nutr 77(4):485–494. https://doi.org/10.1007/s11130-022-01011-z

    Article  PubMed  Google Scholar 

  20. Western T (2012) The sticky tale of seed coat mucilages: production, genetics, and role in seed germination and dispersal. Seed Sci Res 22:1–25. https://doi.org/10.1017/S0960258511000249

    Article  CAS  Google Scholar 

  21. Rumiyati JAP, Jayasena V (2012) Effect of germination on the nutritional and protein profile of Australian sweet lupin (Lupinus angustifolius L). Food Sci Nut 3(5):621–626. https://doi.org/10.4236/FNS.2012.35085

    Article  CAS  Google Scholar 

  22. Xu M, Jin Z, Simsek S, Hall C, Rao J, Chen B (2019) Effect of germination on the chemical composition, thermal, pasting, and moisture sorption properties of flours from chickpea, lentil, and yellow pea. Food Chem 295:579–587. https://doi.org/10.1016/J.FOODCHEM.2019.05.167

    Article  CAS  PubMed  Google Scholar 

  23. Francis H, Debs E, Koubaa M, Alrayess Z, Maroun RG, Louka N (2022) Sprouts use as functional foods. Optimization of germination of wheat (Triticum aestivum L.), alfalfa (Medicago sativa L.), and radish (Raphanus sativus L.) seeds based on their nutritional content evolution. Foods 11(10):1460. https://doi.org/10.3390/FOODS11101460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nelson K, Stojanovska L, Vasiljevic T, Mathai M (2013) Germinated grains: a superior whole grain functional food? Can J Physiol Pharmacol 91(6):429–441. https://doi.org/10.1139/cjpp-2012-0351

    Article  CAS  PubMed  Google Scholar 

  25. Theodoulou FL, Eastmond PJ (2012) Seed storage oil catabolism: a story of give and take. Curr Opin Plant Bio 15(3):322–328. https://doi.org/10.1016/J.PBI.2012.03.017

    Article  CAS  Google Scholar 

  26. Imran M, Nadeem M, Manzoor MF, Javed A, Ali Z, Akhtar MN, Ali M, Hussain Y (2016) Fatty acids characterization, oxidative perspectives and consumer acceptability of oil extracted from pre-treated Chia (Salvia hispanica L.) seeds. Lipids Health Dis 15:162. https://doi.org/10.1186/s12944-016-0329-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Davinelli S, Intrieri M, Corbi G, Scapagnini G (2020) Metabolic indices of polyunsaturated fatty acids: current evidence, research controversies, and clinical utility. Crit Rev Food Sci Nutr 61(2):259–274. https://doi.org/10.1080/10408398.2020.1724871

    Article  CAS  PubMed  Google Scholar 

  28. Kapoor B, Kapoor D, Gautam S, Singh R, Bhardwaj S (2021) Dietary polyunsaturated fatty acids (PUFAs): uses and potential health benefits. Curr Nutr Rep 10(3):232–242. https://doi.org/10.1007/S13668-021-00363-3

    Article  PubMed  Google Scholar 

  29. IOM (2005) Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. The National Academies Press, Washington. https://doi.org/10.17226/10490

    Book  Google Scholar 

  30. Ghafoor K, Juhaimi FA, Ozcan MM, Uslu N, Ahmed IAM, Babiker EE (2022) The effect of boiling, germination and roasting on bioactive properties, phenolic compounds, fatty acids and minerals of chia seed (Salvia hispanica L.) and oils. Int J Gastron Food Sci 27:100447. https://doi.org/10.1016/j.ijgfs.2021.100447

    Article  Google Scholar 

  31. Mattioli S, Dal Bosco A, Castellini C, Falcinelli B, Sileoni V, Marconi O, Mancinelli AC, Cotozzolo E, Benincasa P (2019) Effect of heat- and freeze-drying treatments on phytochemical content and fatty acid profile of alfalfa and flax sprouts. J Sci Food Agric 99(8):4029–4035. https://doi.org/10.1002/jsfa.9630

    Article  CAS  PubMed  Google Scholar 

  32. Deacon G, Kettle C, Hayes D, Dennis C, Tucci J (2017) Omega 3 polyunsaturated fatty acids and the treatment of depression. Crit Rev Food Sci Nutr 57(1):212–223. https://doi.org/10.1080/10408398.2013.876959

    Article  CAS  PubMed  Google Scholar 

  33. Leikin-Frenkel A, Beeri MS, Cooper I (2022) How alpha linolenic acid may sustain blood–brain barrier integrity and boost brain resilience against Alzheimer’s disease. Nutrients 14(23):5091. https://doi.org/10.3390/NU14235091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Reily NM, Tang S, Negrone A, Gan DZQ, Sheanoda V, Christensen H (2023) Omega-3 supplements in the prevention and treatment of youth depression and anxiety symptoms: a scoping review. PLoS ONE 18(4):e0284057. https://doi.org/10.1371/JOURNAL.PONE.0284057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kaur N, Chugh V, Gupta AK (2014) Essential fatty acids as functional components of foods- a review. J Food Sci Technol 51(10):2289–2303. https://doi.org/10.1007/S13197-012-0677-0/METRICS

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was partially funded by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Funding Code 001, National Council for Scientific and Technological Development (CNPq); and Foundation Carlos Chagas Filho Research Support of the State of Rio de Janeiro (FAPERJ) (project numbers E-26/211.830/2021 and E-26/210.919/2021).

Author information

Authors and Affiliations

Authors

Contributions

V.S.C.N.S.: Methodology, Formal analysis, Writing – original draft, Investigation. L.Z.: Conceptualization, Methodology, Formal analysis, Investigation, Writing – review & editing, Supervision. E.N.F.: Methodology, Formal analysis, Writing – review & editing. M.R.C.M.C.: Methodology, Formal analysis, Writing – review & editing. M.C.: Methodology, Formal analysis, Writing – review & editing. R.F.M.: Conceptualization, Methodology, Formal analysis, Funding acquisition, Investigation, Writing – review & editing, Supervision.

Corresponding author

Correspondence to Roberta Fontanive Miyahira.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Ethics Statement

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salgado, V.d.S.C.N., Zago, L., Fonseca, E.N.d. et al. Chemical Composition, Fatty Acid Profile, Phenolic Compounds, and Antioxidant Activity of Raw and Germinated Chia (Salvia hispanica L.) Seeds. Plant Foods Hum Nutr 78, 735–741 (2023). https://doi.org/10.1007/s11130-023-01115-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-023-01115-0

Keywords

Navigation