Skip to main content
Log in

Chia (Salvia hispanica L.) Seed Germination: a Brief Review

  • Review
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Chia (Salvia hispanica L.) is a seed native to northern Mexico and southern Guatemala that has started to be consumed in recent years in other regions of the world owing to its nutritional and functional properties. Germination of chia seeds seems to be able to further improve these properties, and it has been the subject of some studies. In general, germination has proven to be a simple and inexpensive process capable of improving the content of phenolic compounds and the antioxidant capacity of foods, as well as reducing antinutritional factors that interfere with nutrient absorption. A particular characteristic of chia seeds is that they produce mucilage when they are hydrated. For this reason, the germination conditions of the seed need to be adapted. The nutritional guidelines of some countries, such as Brazil, Germany and Sweden, recommend that the diet of the population should be more plant-based, thus encouraging the consumption of foods with a high content of bioactive compounds and nutrients, e.g., germinated seeds. This review briefly explored the germination conditions of chia seeds as well as the changes in phytonutrient content and antinutritional factors after their germination process. The main information available in the literature is that germination of chia seeds can increase the contents of protein, fiber, and total phenolic compounds. As a conclusion, germination of chia seeds is favorable for increasing their health benefits and nutritional value. However, chia germination parameters should be adjusted and microbiological risks should be properly evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data is available upon request.

References

  1. Coates W, Ayerza R (1998) Commercial production of chia in northwestern Argentina. J Am Oil Chem Soc 75:1417–1420. https://doi.org/10.1007/S11746-998-0192-7

    Article  CAS  Google Scholar 

  2. Knez Hrnčič M, Ivanovski M, Cör D, Knez Ž (2020) Chia seeds (Salvia hispanica L.): an overview—phytochemical profile, isolation methods, and application. Molecules 25:1–19. https://doi.org/10.3390/molecules25010011

    CAS  Google Scholar 

  3. Ayerza R, Coates W (2011) Protein content, oil content and fatty acid profiles as potential criteria to determine the origin of commercially grown chia (Salvia hispanica L.). Ind Crop Prod 34:1366–1371. https://doi.org/10.1016/j.indcrop.2010.12.007

    Article  CAS  Google Scholar 

  4. EFSA NDA Panel, Turck DCJ, de Henauw S, Hirsch-Ernst KI et al (2019) Safety of chia seeds (Salvia hispanica L.) as a novel food for extended uses pursuant to regulation (EU) 2015/2283. EFSA J 17:45657–45674. https://doi.org/10.2903/j.efsa.2019.5657

    Google Scholar 

  5. Kaur S, Bains K (2020) Chia (Salvia hispanica L.) – a rediscovered ancient grain, from Aztecs to food laboratories: a review. Nutr Food Sci 50:463–479. https://doi.org/10.1108/NFS-06-2019-0181

    Article  Google Scholar 

  6. Felemban L, Al-Attar A, Zeid I (2020) Medicinal and nutraceutical benefits of chia seed (Salvia hispanica). J Pharm Res Int 32:15–26. https://doi.org/10.9734/JPRI/2020/v32i4131040

    Google Scholar 

  7. Rabail R, Khan MR, Mehwish HM, Rajoka MSR, Lorenzo JM, Kieliszek M et al (2021) An overview of chia seed. Front Biosci 26:643–654. https://doi.org/10.52586/4973

    CAS  Google Scholar 

  8. Dinçoğlu A, Yeşildemir OA, (2019) Renewable source as a functional food: chia seed. Curr Nutr Food Sci15:327–337. https://doi.org/10.2174/1573401314666180410142609

  9. Marineli R, Moraes E, Lenquiste S, Godoy A, Eberlin M, Maróstica M Jr (2014) Chemical characterization and antioxidant potential of Chilean chia seeds and oil (Salvia hispanica L.). LWT - Food Sci Technol 59:1304–1310. https://doi.org/10.1016/j.lwt.2014.04.014

    Article  CAS  Google Scholar 

  10. Reyes-Caudillo E, Tecante A, Valdivia-Lopez M (2008) Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chem 107:656–663. https://doi.org/10.1016/j.foodchem.2007.08.062

    Article  CAS  Google Scholar 

  11. Segura-Campos M, Salazar-Vega I, Chel-Guerrero L, Betancur-Ancona D (2013) Biological potential of chia (Salvia hispanica L.) protein hydrolysates and their incorporation into functional foods. LWT – Food Sci Technol 50:723–731. https://doi.org/10.1016/j.lwt.2012.07.017

    Article  CAS  Google Scholar 

  12. Fernandes S, Salas-Mellado M (2017) Addition of chia seed mucilage for reduction of fat content in bread and cakes. Food Chem 227:237–244. https://doi.org/10.1016/j.foodchem.2017.01.075

    Article  CAS  PubMed  Google Scholar 

  13. Monroy-Torres R, Mancilla-Escobar M, Gallaga-Solórzano J, Medina-Godoy S, Santiago-García E, (2008) Protein digestibility of chia seed Salvia hispanica L. Revista Salud Publica y Nutrition 9:1–9

  14. Timilsena Y, Vongsvivut J, Adhikari R, Adhikari B (2017) Physicochemical and thermal characteristics of Australian chia seed oil. Food Chem 228:394–402. https://doi.org/10.1016/j.foodchem.2017.02.021

    Article  CAS  PubMed  Google Scholar 

  15. Chicco AG, D'Alessandro ME, Hein GJ, Oliva ME, Lombardo YB (2009) Dietary chia seed (Salvia hispanica L.) rich in alpha-linolenic acid improves adiposity and normalises hypertriacylglycerolaemia and insulin resistance in dyslipaemic rats. Br J Nutr 101:41–50. https://doi.org/10.1017/S000711450899053X

    Article  CAS  PubMed  Google Scholar 

  16. Hernández-Pérez T, Valverde M, Orona-Tamayo D, Paredes-Lopez O (2020) Chia (Salvia hispanica): nutraceutical properties and therapeutic applications. Proceedings 53:17. https://doi.org/10.3390/proceedings2020053017

    Google Scholar 

  17. Marineli RDS, Lenquiste SA, Moraes É, Maróstica MR (2015) Antioxidant potential of dietary chia seed and oil (Salvia hispanica L.) in diet-induced obese rats. Food Res Int 76:666–674. https://doi.org/10.1016/j.foodres.2015.07.039

    Article  CAS  PubMed  Google Scholar 

  18. Beltran-Orozco M, Martınez-Olguın A, Robles-Ramırez M (2020) Changes in the nutritional composition and antioxidant capacity of chia seeds (Salvia hispanica L.) during germination process. Food Sci Biotechnol 29:751–757. https://doi.org/10.1007/s10068-019-00726-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gómez-Favela MA, Gutiérrez-Dorado R, Cuevas-Rodríguez EO, Canizalez-Román VA, Del Rosario L-SC, Milán-Carrillo J et al (2017) Improvement of chia seeds with antioxidant activity, GABA, essential amino acids, and dietary fiber by controlled germination bioprocess. Plant Foods Hum Nutr 72:345–352. https://doi.org/10.1007/s11130-017-0631-4

    Article  CAS  PubMed  Google Scholar 

  20. Peláez P, Orona-Tamayo D, Montes-Hernández S, Valverde ME, Paredes-López O, Cibrián-Jaramillo A (2019) Comparative transcriptome analysis of cultivated and wild seeds of Salvia hispanica (chia). Sci Rep 9(1):9761. https://doi.org/10.1038/s41598-019-45895-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alvites-Misajela K, García-Gutiérreza M, Miranda-Rodrígueza C, Ramos-Escuderob F (2019) Organically vs conventionally-grown dark and white chia seeds (Salvia hispanica L.): fatty acid composition, antioxidant activity and techno-functional properties. Grasas Aceites 1-1270. https://doi.org/10.3989/gya

  22. Kulczyński B, Kobus-Cisowska J, Taczanowski M, Kmiecik D, Gramza-Michałowska A (2019) The chemical composition and nutritional value of chia seeds-current state of knowledge. Nutrients 11:1–16. https://doi.org/10.3390/nu11061242

    Article  CAS  Google Scholar 

  23. Sargi S, Silva B, Santos H, Montanher P, Boeing J, Santos Júnior O et al (2013) Antioxidant capacity and chemical composition in seeds rich in omega-3: chia, flax, and perilla. Food Sci Technol 33:541–548. https://doi.org/10.1590/S0101-20612013005000057

    Article  Google Scholar 

  24. Coelho M, Salas-Mellado M (2014) Chemical characterization of CHIA (Salvia hispanica L.) for use in food products. J Food Nutr Res 2:263–269. https://doi.org/10.12691/jfnr-2-5-9

    Article  Google Scholar 

  25. Gema M, Marlon R, Joel D, Fatima R, Silvia L (2020) Effect of ethanol and methanol on the total phenolic content and antioxidant capacity of chia seeds (Salvia hispanica L.). Sains Malaysiana 49:1283–1292. https://doi.org/10.17576/jsm-2020-4906-06

    Article  CAS  Google Scholar 

  26. Vuksan V, Jenkins AL, Dias AG, Lee AS, Jovanovski E, Rogovik AL et al (2010) Reduction in postprandial glucose excursion and prolongation of satiety: possible explanation of the long-term effects of whole grain Salba (Salvia hispanica L.). Eur J Clin Nutr 64:436–438. https://doi.org/10.1038/ejcn.2009.159

    Article  CAS  PubMed  Google Scholar 

  27. Muñoz L, Cobos A, Diaz O, Aguilera J (2012) Chia seeds: microstructure, mucilage extraction and hydration. J Food Eng 108:216–224. https://doi.org/10.1016/j.jfoodeng.2011.06.037

    Article  CAS  Google Scholar 

  28. Orona-Tamayo D, Valverde ME, Paredes-López O (2019) Bioactive peptides from selected Latin American food crops - a nutraceutical and molecular approach. Crit Rev Food Sci Nutr 59(12):1949–1975. https://doi.org/10.1080/10408398.2018.1434480

    Article  CAS  PubMed  Google Scholar 

  29. Grancieri M, Martino HSD, Gonzalez de Mejia E (2019) Chia seed (Salvia hispanica L.) as a source of proteins and bioactive peptides with health benefits: a review. Compr Rev Food Sci Food Saf 18:480–499. https://doi.org/10.1111/1541-4337.12423

    Article  CAS  PubMed  Google Scholar 

  30. Pająk P, Socha R, Broniek J, Królikowska K, Fortuna T (2019) Antioxidant properties, phenolic and mineral composition of germinated chia, golden flax, evening primrose, phacelia and fenugreek. Food Chem 275:69–76. https://doi.org/10.1016/j.foodchem.2018.09.081

    Article  CAS  PubMed  Google Scholar 

  31. Abdel-Aty AM, Elsayed AM, Salah HA, Bassuiny RI, Mohamed SA (2021) Egyptian chia seeds. Food Sci Biotechnol 30:723–734. https://doi.org/10.1007/s10068-021-00902-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Miyahira RF, Lopes JO, Antunes AEC (2021) The use of sprouts to improve the nutritional value of food products: a brief review. Plant Foods Hum Nutr 76:143–152. https://doi.org/10.1007/s11130-021-00888-6

    Article  PubMed  Google Scholar 

  33. Ikram A, Saeed F, Afzaal M, Imran A, Niaz B, Tufail T et al (2021) Nutritional and end-use perspectives of sprouted grains: a comprehensive review. Food Sci Nutr 9:4617–4628. https://doi.org/10.1002/fsn3.2408

    Article  PubMed  PubMed Central  Google Scholar 

  34. Maia Y, Correia M, Lourenço F, Melo D (2020) Saúde e sustentabilidade em grãos: germinados, brotos e microgreens. Revista Referências em Saúde da Faculdade Estácio de Sá de Goiás 3:147–157

    Google Scholar 

  35. European Commission (2013) Commission Implementing Regulation (EU) No 208/2013. OJEU. https://eur-lex.europa.eu/eli/reg_impl/2013/208/oj. Accessed 11 April 2022

  36. Ebert AW (2022) Sprouts and microgreens-novel food sources for healthy diets. Plants 11:1–35. https://doi.org/10.3390/plants11040571

    Article  CAS  Google Scholar 

  37. Aloo SO, Ofosu FK, Kilonzi SM, Shabbir U, Oh DH (2021) Edible plant sprouts: health benefits, trends, and opportunities for novel exploration. Nutrients 13:1–24. https://doi.org/10.3390/nu13082882

    Article  CAS  Google Scholar 

  38. Geng J, Li J, Zhu F, Chen X, Du B, Tian H et al (2022) Plant sprout foods: biological activities, health benefits, and bioavailability. J Food Biochem 46:1–8. https://doi.org/10.1111/jfbc.13777

    Article  Google Scholar 

  39. Cabrera-Santos D, Ordoñez-Salanueva CA, Sampayo-Maldonado S, Campos JE, Orozco-Segovia A, Flores-Ortiz CM (2021) Chia (Salvia hispanica L.) seed soaking, germination, and fatty acid behavior at different temperatures. Agriculture 11:1–16. https://doi.org/10.3390/agriculture11060498

    Article  CAS  Google Scholar 

  40. Argüelles-López OD, Reyes-Moreno C, Gutiérrez-Dorado R, Osuna MFS, López-Cervantes J, Cuevas-Rodríguez EO et al (2018) Functional beverages elaborated from amaranth and chia flours processed by germination and extrusion. Revista de Ciencias Biológicas y de la Salud 20:135–145. https://doi.org/10.18633/biotecnia.v20i3.721

    Google Scholar 

  41. Harvey RR, Heiman Marshall KE, Burnworth L, Hamel M, Tataryn J, Cutler J et al (2017) International outbreak of multiple Salmonella serotype infections linked to sprouted chia seed powder - USA and Canada, 2013-2014. Epidemiol Infect 145:1535–1544. https://doi.org/10.1017/S0950268817000504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Miyahira RF, Antunes AEC (2021) Bacteriological safety of sprouts: a brief review. Int J Food Microbiol 352:1–9. https://doi.org/10.1016/j.ijfoodmicro.2021.109266

    Article  Google Scholar 

  43. Lynch H, Johnston C, Wharton C (2018) Plant-based diets: considerations for environmental impact, protein quality, and exercise performance. Nutrients 10:1–16. https://doi.org/10.3390/nu10121841

    Article  CAS  Google Scholar 

  44. Seo M, Nambara E, Choi G, Yamaguchi S (2009) Interaction of light and hormone signals in germinating seeds. Plant Mol Biol 69:463–472. https://doi.org/10.1007/s11103-008-9429-y

    Article  CAS  PubMed  Google Scholar 

  45. Nonogaki H (2017) Seed biology updates - highlights and new discoveries in seed dormancy and germination research. Front Plant Sci 8:524. https://doi.org/10.3389/fpls.2017.00524

    Article  PubMed  PubMed Central  Google Scholar 

  46. Western T (2012) The sticky tale of seed coat mucilages: production, genetics, and role in seed germination and dispersal. Seed Sci Res 22:1–25. https://doi.org/10.1017/S0960258511000249

    Article  CAS  Google Scholar 

  47. Mlinari S, Gvozdi V, Vukovi A, Varga M, Vlasicek I, Cesar V et al (2020) The effect of light on antioxidant properties and metabolic profile of chia microgreens. Appl Sci 10:1–13. https://doi.org/10.3390/app10175731

    CAS  Google Scholar 

  48. Stefanello R, Viana BB, Goergen PCH, Neves LAS, Nunes UR (2020) Germination of chia seeds submitted to saline stress. Braz J Biol 80:285–289. https://doi.org/10.1590/1519-6984.192140

    Article  CAS  PubMed  Google Scholar 

  49. Wang H, Gui M, Tian X, Xin X, Wang T, Li J (2017) Effects of UV-B on vitamin C, phenolics, flavonoids and their related enzyme activities in mung bean sprouts (Vigna radiata). Inter J Food Sci Technol 52:827–833. https://doi.org/10.1111/ijfs.13345

    Article  CAS  Google Scholar 

  50. Benincasa P, Falcinelli B, Lutts S, Stagnari F, Galieni A (2019) Sprouted grains: a comprehensive review. Nutrients 11:1–29. https://doi.org/10.3390/nu11020421

    Article  CAS  Google Scholar 

  51. Oliveira-Alves SC, Vendramini-Costa DB, Cazarin CBB, Júnior MRM, Ferreira JPB, Silva AB et al (2017) Characterization of phenolic compounds in chia (Salvia hispanica L.) seeds, fiber flour and oil. Food Chem 232:295–305. https://doi.org/10.1016/j.foodchem.2017.04.002

    Article  CAS  PubMed  Google Scholar 

  52. Nikmaram N, Dar BN, Roohinejad S, Koubaa M, Barba FJ, Greiner R et al (2017) Recent advances in γ-aminobutyric acid (GABA) properties in pulses: an overview. J Sci Food Agric 97:2681–2689. https://doi.org/10.1002/jsfa.8283

    Article  CAS  PubMed  Google Scholar 

  53. Anderson JW, Baird P, Davis RH, Ferreri S, Knudtson M, Koraym A et al (2009) Health benefits of dietary fiber. Nutr Rev 67:188–205. https://doi.org/10.1111/j.1753-4887.2009.00189.x

    Article  PubMed  Google Scholar 

  54. Li Y, Qian H, Sun X, Cui Y, Wang H, Du C et al (2014) The effects of germination on chemical composition of peanut seed. Food Sci Technol Res 20:883–889. https://doi.org/10.3136/fstr.20.883

    Article  CAS  Google Scholar 

  55. Nkhata SG, Ayua E, Kamau EH, Shingiro JB (2018) Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci Nutr 6:2446–2458. https://doi.org/10.1002/fsn3.846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gilani GS, Cockell KA, Sepehr E (2005) Effects of antinutritional factors on protein digestibility and amino acid availability in foods. J AOAC Int 88:967–987. https://doi.org/10.1093/jaoac/88.3.967

    Article  CAS  PubMed  Google Scholar 

  57. Mohan V, Tresina P, Daffodil E (2016) Antinutritional factors in legume seeds: characteristics and determination. Encyclopedia Food Health 211–220. https://doi.org/10.1016/B978-0-12-384947-2.00036-2

  58. Keyata EO, Tola YB, Bultosa G, Forsido SF (2021) Premilling treatments effects on nutritional composition, antinutritional factors, and in vitro mineral bioavailability of the improved Assosa I sorghum variety. Food Sci Nutr 9:1929–1938. https://doi.org/10.1002/fsn3.2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ribas-Agustí A, Martín-Belloso O, Soliva-Fortuny R, Elez-Martínez P (2018) Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. Crit Rev Food Sci Nutr 58:2531–2548. https://doi.org/10.1080/10408398.2017.1331200

    Article  CAS  PubMed  Google Scholar 

  60. Calvo-Lerma J, Paz-Yépez C, Asensio-Grau A, Heredia A, Andrés A (2020) Impact of processing and intestinal conditions on in vitro digestion of chia. Foods 9:290. https://doi.org/10.3390/foods9030290

    Article  CAS  PubMed Central  Google Scholar 

  61. Xu M, Dong J-F, Zhu M (2005) Effects of germination conditions on ascorbic acid level and yield of soybean sprouts. J Sci Food 85:943–947. https://doi.org/10.1002/jsfa.2050

    Article  CAS  Google Scholar 

Download references

Funding

This study was financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES)- Finance code 001 and had the support of the Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) (process numbers E- 26/210.064/2021).

Author information

Authors and Affiliations

Authors

Contributions

R.M. had the idea for the article. V.S. performed the literature search and data analysis. R.M., L.Z., V.S. and A.A. wrote the main manuscript text. V.S. prepared Table 2 and Fig. 1. R.M. prepared Tables 1 and 3. All authors drafted and/or critically revised the work.

Corresponding author

Correspondence to Roberta Fontanive Miyahira.

Ethics declarations

Ethics Statement

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salgado, V.d.S.C.N., Zago, L., Antunes, A.E.C. et al. Chia (Salvia hispanica L.) Seed Germination: a Brief Review. Plant Foods Hum Nutr 77, 485–494 (2022). https://doi.org/10.1007/s11130-022-01011-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-022-01011-z

Keywords

Navigation