Skip to main content
Log in

Quantum (t, n) threshold signature based on logistic chaotic sequences and mutually unbiased bases

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A quantum (tn) threshold signature (QTS) based on Logistic Chaotic sequences and mutually unbiased bases is proposed, taking advantage of the pseudo-randomness of chaotic sequences and the cyclic characteristics of d-dimensional mutually unbiased bases. In this scheme, only t or more signatories can produce a valid signature on behalf of a signature group consisting of n members. The scheme uses a Logistic Chaotic mapping to generate a chaotic sequence, for which a particle swapping algorithm is used to obtain a position sequence, combined with a generalized Pauli operator to encrypt the message. Also, mutually unbiased bases in d-dimensional Hilbert space are used to verify the threshold value in the scheme. Security analysis proves that the proposed scheme satisfies signature non-repudiation and is resistant to collusive attacks by disloyal signing members. By comparing to existing QTS schemes, the proposed QTS scheme can reduce the resources consumed in the signing phase. The number of particles in the scheme does not increase as the number of signing members increases, except for local operations. That increases the scalability of the signature scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All in this paper are standard datasets that have been proved by a large number of papers and scholars.

References

  1. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994). IEEE

  2. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)

  3. Diffie, W., Hellman, M.E.: New directions in cryptography. In: Democratizing Cryptography: The Work of Whitfield Diffie and Martin Hellman, pp. 365–390 (2022)

  4. Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv preprint arXiv:quant-ph/0105032 (2001)

  5. Buhrman, H., Cleve, R., Watrous, J., De Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001)

    Article  ADS  Google Scholar 

  6. Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)

    Article  ADS  Google Scholar 

  7. Yang, Y., Wen, Q.: Quantum threshold group signature. Sci. China, Ser. G 51(10), 1505–1514 (2008)

    Article  Google Scholar 

  8. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  9. Qin, H., Tang, W.K., Tso, R.: Quantum (t, n) threshold group signature based on bell state. Quantum Inf. Process. 19, 1–10 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  10. Gao, M., Yang, W., Liu, Y.: A novel quantum (t, n) threshold group signature based on d-dimensional quantum system. Quantum Inf. Process. 20, 1–13 (2021)

    Article  MathSciNet  Google Scholar 

  11. Tavakoli, A., Herbauts, I., Żukowski, M., Bourennane, M.: Secret sharing with a single d-level quantum system. Phys. Rev. A 92(3), 030302 (2015)

    Article  ADS  Google Scholar 

  12. Guo, R., Cheng, X.: Cryptanalysis and improvement of a (t, n) threshold group signature scheme. Quantum Inf. Process. 21(1), 37 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  13. Lou, X., Wang, Y., Long, H., Yang, Y., Li, J.: Sequential quantum multiparty signature based on quantum Fourier transform and chaotic system. IEEE Access 8, 13218–13227 (2020)

    Article  Google Scholar 

  14. Thas, K.: The geometry of generalized Pauli operators of n-qudit Hilbert space, and an application to MUBs. Europhys. Lett. 86(6), 60005 (2009)

    Article  ADS  Google Scholar 

  15. Yang, Y.-H., Gao, F., Wu, X., Qin, S.-J., Zuo, H.-J., Wen, Q.-Y.: Quantum secret sharing via local operations and classical communication. Sci. Rep. 5(1), 16967 (2015)

    Article  ADS  Google Scholar 

  16. Matthews, R.: On the derivation of a “chaotic’’ encryption algorithm. Cryptologia 13(1), 29–42 (1989)

    Article  MathSciNet  Google Scholar 

  17. Wu, X., Zhu, B., Hu, Y., Ran, Y.: A novel color image encryption scheme using rectangular transform-enhanced chaotic tent maps. IEEE Access 5, 6429–6436 (2017)

    Google Scholar 

  18. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441 (2000)

    Article  ADS  Google Scholar 

  19. Acin, A., Gisin, N., Masanes, L.: From bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97(12), 120405 (2006)

    Article  ADS  Google Scholar 

  20. Sun, Y., Wen, Q.-Y., Gao, F., Zhu, F.-C.: Robust variations of the Bennett-Brassard 1984 protocol against collective noise. Phys. Rev. A 80(3), 032321 (2009)

    Article  ADS  Google Scholar 

  21. Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88(12), 127902 (2002)

    Article  ADS  Google Scholar 

  22. Aigner, M., Ziegler, G.M.: Proofs from the book. Berlin. Germany 1, (1999)

  23. Boykin, P.O., Roychowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A 67(4), 042317 (2003)

    Article  ADS  Google Scholar 

  24. Gao, F., Qin, S.-J., Guo, F.-Z., Wen, Q.-Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84(2), 022344 (2011)

    Article  ADS  Google Scholar 

  25. Du, Y..-t, Bao, W..-s: Multiparty quantum secret sharing scheme based on the phase shift operations. Opt. Commun. 308, 159–163 (2013)

    Article  ADS  Google Scholar 

  26. Song, X.-L., Liu, Y.-B., Deng, H.-Y., Xiao, Y.-G.: (t, n) threshold d-level quantum secret sharing. Sci. Rep. 7(1), 6366 (2017)

    Article  ADS  Google Scholar 

  27. Mashhadi, S.: General secret sharing based on quantum Fourier transform. Quantum Inf. Process. 18(4), 114 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  28. Sutradhar, K., Om, H.: Enhanced (t, n) threshold d-level quantum secret sharing. Sci. Rep. 11(1), 17083 (2021)

    Article  ADS  Google Scholar 

  29. Zhang, Y., Liu, F., Zuo, H.: Improved quantum (t, n) threshold group signature. Chin. Phys. B 32(9), 090308 (2023)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China, Grant Nos. 61771294, 61972235. It was partially supported by the Shandong Technology and Busyness University Staring Foundation for Doctorate Research (Grant No. 014-306518).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaodong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Fang, H. & Liu, F. Quantum (t, n) threshold signature based on logistic chaotic sequences and mutually unbiased bases. Quantum Inf Process 23, 154 (2024). https://doi.org/10.1007/s11128-024-04366-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04366-1

Keywords

Navigation