Skip to main content
Log in

Security analysis of linear optics cloning machine-enhanced passive state preparation continuous-variable quantum key distribution

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, the security of linear optics cloning machine-enhanced passive state preparation continuous-variable quantum key distribution is investigated. The employment of passive state preparation eliminates the strict requirements on electro-optical modulators, while an appropriately tuned linear optics cloning machine can compensate the preparation noise introduced in passive state preparation and improve the system performance. The expression of the composable secret key rate in the finite-size regime of the proposed scheme is obtained. Simulation results demonstrate that the proposed scheme can effectively enhance the secret key rate and increase the maximum secure transmission distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. Huang, P., Huang, J.Z., Zhang, Z.S., Zeng, G.H.: Quantum key distribution using basis encoding of Gaussian-modulated coherent states. Phys. Rev. A 97(4), 042311 (2018)

    Article  ADS  Google Scholar 

  2. Leverrier, A., García-Patrón, R., Renner, R., Cerf, N.J.: Security of continuous-variable quantum key distribution against general attacks. Phys. Rev. Lett. 110(3), 030502 (2013)

    Article  ADS  Google Scholar 

  3. Leverrier, A.: Composable security proof for continuous-variable quantum key distribution with coherent states. Phys. Rev. Lett. 114(7), 070501 (2015)

    Article  ADS  Google Scholar 

  4. Leverrier, A.: Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction. Phys. Rev. Lett. 118(20), 200501 (2017)

    Article  ADS  Google Scholar 

  5. Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photon 7, 378–381 (2013)

    Article  ADS  Google Scholar 

  6. Jain, N., et al.: Practical continuous-variable quantum key distribution with composable security. Nat. Commun. 13, 4740 (2022)

    Article  ADS  Google Scholar 

  7. Frédéric, G., Philippe, G.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902 (2002)

    Article  Google Scholar 

  8. Leverrier, A., Philippe, G.: Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation. Phys. Rev. Lett. 102, 180504 (2009)

    Article  ADS  Google Scholar 

  9. Qi, B., Evans, P.G., Grice, W.P.: Passive state preparation in the Gaussian-modulated coherent-states quantum key distribution. Phys. Rev. A 97, 012317 (2018)

    Article  ADS  Google Scholar 

  10. Qi, B., Gunther, H., Evans, P.G., Williams, B.P., Camacho, R.M., Peters, N.A.: Experimental passive state preparation for continuous variable quantum communications. Phys. Rev. Appl. 13, 054065 (2020)

    Article  ADS  Google Scholar 

  11. Huang, P., Wang, T., Chen, R., Wang, P., Zhou, Y.M., Zeng, G.H.: Experimental continuous-variable quantum key distribution using a thermal source. New J. Phys. 23, 113028 (2021)

    Article  ADS  Google Scholar 

  12. Wu, X.D., Wang, Y.J., Guo, Y., Zhong, H., Huang, D.: Passive continuous-variable quantum key distribution using a locally generated local oscillator. Phys. Rev. A 103, 032604 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  13. Fossier, S., Diamanti, E., Debuisschert, T., Tualle-Brouri, R., Grangier, P.: improvement of continuous-variable quantum key distribution systems by using optical preamplifiers. J. Phys. B At. Mol. Opt. Phys. 42, 114014 (2009)

    Article  ADS  Google Scholar 

  14. Guo, Y., Lv, G., Zeng, G.H.: Balancing continuous-variable quantum key distribution with source-tunable linear optics cloning machine. Quantum Inf. Process. 14, 4323–4338 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  15. Wu, X.D., Liao, Q., Huang, D., Wu, X.H., Guo, Y.: Balancing four-state continuous-variable quantum key distribution with linear optics cloning machine. Chin. Phys. B 26, 110304 (2017)

    Article  ADS  Google Scholar 

  16. Zhang, H., Mao, Y., Huang, D., Guo, Y., Wu, X.D., Zhang, L.: Finite-size analysis of eight-state continuous-variable quantum key distribution with the linear optics cloning machine. Chin. Phys. B 27, 090307 (2018)

    Article  ADS  Google Scholar 

  17. Yang, F.L., Qiu, D.W.: Thermal states quantum cryptography with linear optics cloning machine. Quantum Inf. Process. 19, 99 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  18. Andersen, U.L., Josse, V., Leuchs, G.: Unconditional quantum cloning of coherent states with linear optics. Phys. Rev. Lett. 94, 240503 (2005)

    Article  ADS  Google Scholar 

  19. Dong, Y.L., Zou, X.B., Guo, G.C.: Local and nonlocal cloning of coherent states with known phases using linear optics. Phys. Rev. A 77, 034304 (2008)

    Article  ADS  Google Scholar 

  20. Fan, H., Wang, Y.N., Jing, L., Yue, J.D., Shi, H.D., Zhang, Y.L., Mu, L.Z.: Quantum cloning machines and the applications. Phys. Rep. 544(3), 241–322 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  21. García-Patrón, R.: Quantum information with optical continuous variables: from bell tests to key distribution. Universite Libre De Bruxelles, Brussels (2007)

    Google Scholar 

  22. Huang, D., Huang, P., Lin, D.K., Zeng, G.H.: Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep. 6, 19201 (2016)

    Article  ADS  Google Scholar 

  23. Liu, W.B., et al.: Homodyne detection quadrature phase shift keying continuous-variable quantum key distribution with high excess noise tolerance. PRX Quantum 2, 040334 (2021)

    Article  ADS  Google Scholar 

  24. Wu, X.D., Wang, Y.J., Li, S., Zhang, W., Huang, D., Guo, Y.: Security analysis of passive measurement-device-independent continuous-variable quantum key distribution with almost no public communication. Quantum Inf. Process. 18, 372 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  25. Zhang, M.Q., Huang, P., Wang, P., Wei, S.R., Zeng, G.H.: Experimental free-space continuous-variable quantum key distribution with thermal source. Opt. Lett. 48, 1184–1187 (2023)

    Article  ADS  Google Scholar 

  26. Leverrier, A., Frédéric, G., Philippe, G.: Finite-size analysis of a continuous-variable quantum key distribution. Phys. Rev. A 81, 062343 (2010)

    Article  ADS  Google Scholar 

  27. Stefano, P.: Limits and security of free-space quantum communications. Phys. Rev. Research 3, 013279 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported in part by the Natural Science Foundation of China (No. 62361009) and in part by the Guizhou Provincial Science and Technology Projects (No. ZK[2021]304).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by YH. The first draft of the manuscript was written by YH and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tianyi Wang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The detailed derivation of \(I\left( {A:B} \right)\) and \(S\left( {B:E} \right)\) in PSP-LOCM CVQKD

Appendix: The detailed derivation of \(I\left( {A:B} \right)\) and \(S\left( {B:E} \right)\) in PSP-LOCM CVQKD

Given the covariance matrix \(\gamma_{{AB\varepsilon_{{{\text{PE}}}} }}\) in Eq. (22), the classical mutual information \(I\left( {A:B} \right)\) can be expressed as

$$ I\left( {A:B} \right) = \log_{2} \frac{{V_{B} }}{{V_{B|A} }} = \log_{2} \left( {\frac{{\sigma_{B}^{2} + 1}}{{\sigma_{B}^{2} - {{c_{AB} } \mathord{\left/ {\vphantom {{c_{AB} } {\left( {\sigma_{A}^{2} + 1} \right)}}} \right. \kern-0pt} {\left( {\sigma_{A}^{2} + 1} \right)}}}}} \right). $$
(26)

On the other hand, \(S\left( {B:E} \right)\) can be given by

$$ S\left( {B:E} \right) = S\left( E \right) - S\left( {E|B} \right), $$
(27)

where \(S\left( \bullet \right)\) denotes the von Neumann entropy, \(S\left( { \bullet \left| B \right.} \right)\) denotes the conditional von Neumann entropy on Bob’s measurements, and \(B\) indicates Bob's measurement results. On the one hand, to maximize the information available, Eve can purify the system \(EAB_{1}\), it follows that \(S\left( E \right) = S\left( {AB} \right)\). On the other hand, Bob also can purify the system AEFG, one can get \(S\left( {E|B} \right) = S\left( {AFG|B} \right)\). The above equation can be rewritten as

$$ S_{{\varepsilon_{{{\text{PE}}}} }} \left( {B:E} \right) = S\left( {AB_{{\varepsilon_{{{\text{PE}}}} }} } \right) - S\left( {AFG|B_{{\varepsilon_{{{\text{PE}}}} }} } \right) = \sum\limits_{i = 1}^{2} {G\left( {\frac{{\lambda_{i} - 1}}{2}} \right)} - \sum\limits_{i = 3}^{5} {G\left( {\frac{{\lambda_{i} - 1}}{2}} \right)} . $$
(28)

It can be noted that \(S\left( {AB} \right)\) is determined by the covariance matrix \(\gamma_{AB}\) and \(S\left( {AFG|B} \right)\) is determined by the covariance matrix \(\gamma_{AFGB}\). \(\gamma_{AB}\) is described by

$$ S\left( {AB} \right) = \sum\limits_{i = 1}^{2} {G\left( {\frac{{\lambda_{i} - 1}}{2}} \right)} , $$
(29)

where \(G\left( x \right) = \left( {x + 1} \right)\log_{2} \left( {x + 1} \right) - x\log_{2} x\) is the von Neumann entropy of the thermal field state [3, 4] and \(\lambda_{i}\) is the i-th symplectic eigenvalue. The expressions of \(\lambda_{1 - 2}\) read

$$ \lambda_{1} = \sqrt {\frac{1}{2}\left[ {A + \sqrt {A^{2} - 4B} } \right]} ,\lambda_{2} = \sqrt {\frac{1}{2}\left[ {A - \sqrt {A^{2} - 4B} } \right]} , $$
(30)

where \(A = \det \gamma_{A} + \det \gamma_{B} + \det \sigma_{AB}\) and \(B = \det \gamma_{AB}\). For \(\lambda_{3 - 5}\), it is first necessary to derive \(\gamma_{AFG}^{{x_{B} }}\) which can be expressed as

$$ \gamma_{AFG}^{{x_{B} }} = \gamma_{AFG} - \sigma_{{^{AFGB} }}^{T} \left( {\gamma_{B} + I_{2} } \right)^{ - 1} \sigma_{AFGB} , $$
(31)

where \(\left( \bullet \right)^{ - 1}\) represents the inverse of a matrix. \(\gamma_{AFG}^{{x_{B} }}\) is the system after Bob's measurement, which is obtained by projecting the measurement of the whole system on the mode B2. Besides, the whole system can be described by the covariance matrix \(\gamma_{{AFGB_{2} }}\), whose expression is

$$ \gamma_{AFGB} = \Omega^{T} \left( {\gamma_{AB} \oplus \gamma_{{F_{0} G}} } \right)\Omega = \left( {\begin{array}{*{20}c} {\gamma_{AFG} } & {\sigma_{AFGB}^{T} } \\ {\sigma_{AFGB} } & {\gamma_{B} } \\ \end{array} } \right), $$
(32)

where \(\Omega\) presents the beam splitter transformation, and contents \(\Omega = I_{A} \oplus \Omega_{{{\text{BF}}_{0} }}^{{{\text{BS}}}} \oplus I_{G}\) with \(I_{A} = I_{G} = \left( {\begin{array}{*{20}c} 1 & 0 \\ 0 & 1 \\ \end{array} } \right)\). Moreover, \(\Omega_{{{\text{BF}}_{0} }}^{{{\text{BS}}}}\) can be given by

$$ \Omega_{{{\text{BF}}_{0} }}^{{{\text{BS}}}} = \left( {\begin{array}{*{20}c} {\sqrt {T_{{{\text{LOCM}}}} } I_{2} } & {\sqrt {1 - T_{{{\text{LOCM}}}} } I_{2} } \\ { - \sqrt {1 - T_{{{\text{LOCM}}}} } I_{2} } & {\sqrt {T_{{{\text{LOCM}}}} } I_{2} } \\ \end{array} } \right). $$
(33)

The matrix of additional LOCM tunable noise effects is

$$ \gamma_{{F_{0} G}} = \left( {\begin{array}{*{20}c} {N_{{{\text{LOCM}}}} I_{2} } & {\sqrt {N_{{{\text{LOCM}}}}^{2} - 1} \sigma_{Z} } \\ {\sqrt {N_{{{\text{LOCM}}}}^{2} - 1} \sigma_{Z} } & {N_{{{\text{LOCM}}}} I_{2} } \\ \end{array} } \right). $$
(34)

Fortunately, after the above intricate calculations, \(\gamma_{AFG}^{{x_{B} }}\) can be presented by the following equation

$$ \gamma_{AFG}^{{x_{B} }} = \left( {\begin{array}{*{20}c} {\gamma_{A} } & {\sigma_{AF} } & {\sigma_{AG} } \\ {\sigma_{AF}^{T} } & {\gamma_{F} } & {\sigma_{FG} } \\ {\sigma_{AG}^{T} } & {\sigma_{FG}^{T} } & {\gamma_{G} } \\ \end{array} } \right). $$
(35)

The elements in the matrix of Eq. (35) can be expressed as

$$ \begin{aligned} \gamma_{A} = & \left( {\begin{array}{*{20}c} V & 0 \\ 0 & V \\ \end{array} } \right),\gamma_{F} = \left( {\begin{array}{*{20}c} {1 + TT_{{{\text{LOCM}}}} \left( {V_{A} + \varepsilon } \right)} & 0 \\ 0 & {1 + TT_{{{\text{LOCM}}}} \left( {V_{A} + \varepsilon } \right)} \\ \end{array} } \right), \\ \gamma_{G} = & \left( {\begin{array}{*{20}c} {1 - T\left( {V_{A} + \varepsilon } \right)\left( {T_{{{\text{LOCM}}}} - 1} \right)} & 0 \\ 0 & {1 - T\left( {V_{A} + \varepsilon } \right)\left( {T_{{{\text{LOCM}}}} - 1} \right)} \\ \end{array} } \right), \\ \sigma_{AF} = & \left( {\begin{array}{*{20}c} {\sqrt {TT_{{{\text{LOCM}}}} \left( {V^{2} - 1} \right)} } & 0 \\ 0 & { - \sqrt {TT_{{{\text{LOCM}}}} \left( {V^{2} - 1} \right)} } \\ \end{array} } \right), \\ \sigma_{AG} = & \left( {\begin{array}{*{20}c} {\sqrt {T\left( {1 - T_{{{\text{LOCM}}}} } \right)\left( {V^{2} - 1} \right)} } & 0 \\ 0 & {\sqrt {T\left( {1 - T_{{{\text{LOCM}}}} } \right)\left( {V^{2} - 1} \right)} } \\ \end{array} } \right), \\ \sigma_{FG} = & \left( {\begin{array}{*{20}c} {T\left( {V_{A} + \varepsilon } \right)\sqrt {T_{{{\text{LOCM}}}} \left( {1 - T_{{{\text{LOCM}}}} } \right)} } & 0 \\ 0 & { - T\left( {V_{A} + \varepsilon } \right)\sqrt {T_{{{\text{LOCM}}}} \left( {1 - T_{{{\text{LOCM}}}} } \right)} } \\ \end{array} } \right). \\ \end{aligned} $$
(36)

Then, it is straightforward to calculate \(\lambda_{3 - 5}\)

$$ \lambda_{3} = \sqrt {\frac{1}{2}\left[ {C + \sqrt {C^{2} - 4D} } \right]} ,\lambda_{4} = \sqrt {\frac{1}{2}\left[ {C - \sqrt {C^{2} - 4D} } \right]} ,\lambda_{5} = 1, $$
(37)

where \(C = \frac{{A\chi_{{{\text{LOCM}}}}^{2} + B + 1 + 2\chi_{{{\text{LOCM}}}} \left( {V\sqrt B + T\left( {V + \chi_{{{\text{line}}}} } \right) + 2T\sqrt {V^{2} - 1} } \right)}}{{\left[ {T\left( {V + \chi_{{{\text{tot}}}} } \right)} \right]^{2} }}\) and \(D = \left[ {\frac{{V + \sqrt B \chi_{{{\text{LOCM}}}} }}{{T\left( {V + \chi_{{{\text{tot}}}} } \right)}}} \right]^{2}\). Hence, \(S\left( {B:E} \right)\) can be derived from \(S\left( {AFG|B} \right) = \sum\limits_{i = 3}^{5} {G\left( {\frac{{\lambda_{i} - 1}}{2}} \right)}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Wang, T. Security analysis of linear optics cloning machine-enhanced passive state preparation continuous-variable quantum key distribution. Quantum Inf Process 23, 135 (2024). https://doi.org/10.1007/s11128-024-04344-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04344-7

Keywords

Navigation