Skip to main content
Log in

Quantifying correlations relative to channels via metric-adjusted skew information

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum coherence and quantum correlations are important components of quantum information theory, which play important roles in quantum information processing. In this paper, we quantify correlations from coherence. The correlations relative to channels via metric-adjusted skew information are put forward. The corresponding results are suitable for special channels, such as positive operator-valued measurements (POVMs), projection measurements and von Neumann measurements. In addition, we discuss the dynamics of quantum correlations in the Bell-diagonal state relative to some classical channels via metric-adjusted skew information. The typical two are the Werner state and the isotropic state. We find that some separable states in entanglement resources theory possess correlations. It also shows quantum channels will disturb quantum states and have a great influence on the correlations. The correlations relative to different channels via different versions of metric-adjusted skew information have their advantages. This has inspired one to study the problem of the existence and action of various quantum correlations in quantum theory to be easily applied to experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability statement

Data sharing was not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Chitambar, E., Gour, G.: Quantum resource theories. Rev. Mod. Phys. 91(2), 025001 (2019)

    ADS  MathSciNet  Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M., et al.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865 (2009)

    ADS  MathSciNet  Google Scholar 

  3. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113(14), 140401 (2014)

    ADS  Google Scholar 

  4. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Phys. Today 54(2), 60 (2001)

    Google Scholar 

  5. Adesso, G., Bromley, T.R., Cianciaruso, M.: Measures and applications of quantum correlations. J. Phys. A: Math. Theor. 49(47), 473001 (2016)

    ADS  MathSciNet  Google Scholar 

  6. Hu, M.L., Hu, X., Wang, J., et al.: Quantum coherence and geometric quantum discord. Phys. Rep. 762, 1–100 (2018)

    ADS  MathSciNet  Google Scholar 

  7. Uola, R., Costa, A.C.S., Nguyen, H.C., et al.: Quantum steering. Rev. Mod. Phys. 92(1), 015001 (2020)

    ADS  MathSciNet  Google Scholar 

  8. Genovese, M.: Research on hidden variable theories: a review of recent progresses. Phys. Rep. 413(6), 319–396 (2005)

    ADS  MathSciNet  Google Scholar 

  9. Modi, K., Brodutch, A., Cable, H., et al: Quantum discord and other measures of quantum correlation (2012). arXiv:1112.6238

  10. Tao, Z., Gui-Lu, L., Shuang-Shuang, F.U., et al.: Introduction to quantum correlations. Physics 42(08), 544–551 (2013)

    Google Scholar 

  11. Modi, K., Brodutch, A., Cable, H., et al.: The classical-quantum boundary for correlations: Discord and related measures. Rev. Mod. Phys. 84(4), 1655 (2012)

    ADS  Google Scholar 

  12. Streltsov, A., Singh, U., Dhar, H.S., et al.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115(2), 020403 (2015)

    ADS  MathSciNet  Google Scholar 

  13. Yao, Y., Xiao, X., Ge, L., et al.: Quantum coherence in multipartite systems. Phys. Rev. A 92(2), 022112 (2015)

    ADS  Google Scholar 

  14. Chitambar, E., Hsieh, M.H.: Relating the resource theories of entanglement and quantum coherence. Phys. Rev. Lett. 117(2), 020402 (2016)

    ADS  Google Scholar 

  15. Ma, J., Yadin, B., Girolami, D., et al.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116(16), 160407 (2016)

    ADS  Google Scholar 

  16. Tan, K.C., Kwon, H., Park, C.Y., et al.: Unified view of quantum correlations and quantum coherence. Phys. Rev. A 94(2), 022329 (2016)

    ADS  Google Scholar 

  17. Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: Quantum coherence as a resource. Rev. Mod. Phys. 89(4), 041003 (2017)

    ADS  MathSciNet  Google Scholar 

  18. Sun, Y., Mao, Y., Luo, S.: From quantum coherence to quantum correlations. Europhys. Lett. 118(6), 60007 (2017)

    ADS  Google Scholar 

  19. Mondal, D., Pramanik, T., Pati, A.K.: Nonlocal advantage of quantum coherence. Phys. Rev. A 95(1), 010301 (2017)

    ADS  MathSciNet  Google Scholar 

  20. Guo, Y., Goswami, S.: Discordlike correlation of bipartite coherence. Phys. Rev. A 95(6), 062340 (2017)

    ADS  Google Scholar 

  21. Luo, S., Sun, Y.: Coherence and complementarity in state-channel interaction. Phys. Rev. A 98(1), 012113 (2018)

    ADS  Google Scholar 

  22. Hu, M.L., Hu, X., Wang, J., et al.: Quantum coherence and geometric quantum discord. Phys. Rep. 762, 1–100 (2018)

    ADS  MathSciNet  Google Scholar 

  23. Kim, S., Li, L., Kumar, A., et al.: Interrelation between partial coherence and quantum correlations. Phys. Rev. A 98(2), 022306 (2018)

    ADS  Google Scholar 

  24. Ren, L.H., Gao, M., Ren, J., et al.: Resource conversion between operational coherence and multipartite entanglement in many-body systems. New J. Phys. 23(4), 043053 (2021)

    ADS  MathSciNet  Google Scholar 

  25. Bischof, F., Kampermann, H., Bru\(\beta \), D.: Resource theory of coherence based on positive-operator-valued measures. Phys. Rev. Lett. 123(11), 110402 (2019)

  26. Xu, J., Shao, L.H., Fei, S.M.: Coherence measures with respect to general quantum measurements. Phys. Rev. A 102(1), 012411 (2020)

    ADS  MathSciNet  Google Scholar 

  27. Li, N., Luo, S., Sun, Y.: Quantifying correlations via local channels. Phys. Rev. A 105(3), 032436 (2022)

    ADS  MathSciNet  Google Scholar 

  28. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A: Math. Gen. 34(35), 6899 (2001)

    ADS  MathSciNet  Google Scholar 

  29. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88(1), 017901 (2001)

    ADS  Google Scholar 

  30. Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77(4), 042303 (2008)

    ADS  Google Scholar 

  31. Daki\(\acute{c}\), B., Vedral, V., Brukner, \(\breve{C}\).: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105(19), 190502 (2010)

  32. Luo, S., Fu, S.: Geometric measure of quantum discord. Phys. Rev. A 82(3), 034302 (2010)

    ADS  MathSciNet  Google Scholar 

  33. Piani, M.: Problem with geometric discord. Phys. Rev. A 86(3), 034101 (2012)

    ADS  Google Scholar 

  34. Chang, L., Luo, S.: Remedying the local ancilla problem with geometric discord. Phys. Rev. A 87(6), 062303 (2013)

    ADS  Google Scholar 

  35. Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77(2), 022301 (2008)

    ADS  Google Scholar 

  36. Luo, S., Li, N.: Decoherence and measurement-induced correlations. Phys. Rev. A 84(5), 052309 (2011)

    ADS  Google Scholar 

  37. Mi\(\breve{s}\)ta Jr, L., Tatham, R., Girolami, D., et al: Measurement-induced disturbances and nonclassical correlations of Gaussian states. Phys. Rev. A 83(4), 042325 (2011)

  38. Luo, S., Fu, S.: Global effects of quantum states induced by locally invariant measurements. Europhys. Lett. 92(2), 20004 (2010)

    ADS  Google Scholar 

  39. Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106(12), 120401 (2011)

    ADS  Google Scholar 

  40. Xi, Z., Wang, X., Li, Y.: Measurement-induced nonlocality based on the relative entropy. Phys. Rev. A 85(4), 042325 (2012)

    ADS  Google Scholar 

  41. Hu, M.L., Fan, H.: Measurement-induced nonlocality based on the trace norm. New J. Phys. 17(3), 033004 (2015)

    ADS  Google Scholar 

  42. Li, L., Wang, Q.W., Shen, S.Q., et al.: Measurement-induced nonlocality based on Wigner-Yanase skew information. Europhys. Lett. 114(1), 10007 (2016)

    ADS  Google Scholar 

  43. Muthuganesan, R., Sankaranarayanan, R.: Fidelity based measurement induced nonlocality. Phys. Lett. A 381(36), 3028–3032 (2017)

    ADS  Google Scholar 

  44. Hansen, F.: Metric adjusted skew information[J]. Proc. Natl. Acad. Sci. 105(29), 9909–9916 (2008)

    ADS  MathSciNet  Google Scholar 

  45. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72(22), 3439 (1994)

    ADS  MathSciNet  Google Scholar 

  46. Sun, Y., Li, N., Luo, S.: Quantifying coherence relative to channels via metric-adjusted skew information. Phys. Rev. A 106(1), 012436 (2022)

    ADS  MathSciNet  Google Scholar 

  47. Petz, D.: Monotone metrics on matrix spaces. Linear Algebra Appl. 244, 81–96 (1996)

    MathSciNet  Google Scholar 

  48. Yanagi, K.: Metric adjusted skew information and uncertainty relation. J. Math. Anal. Appl. 380(2), 888–892 (2011)

    MathSciNet  Google Scholar 

  49. Cai, L.: Sum uncertainty relations based on metric-adjusted skew information. Quantum Inf. Process. 20(2), 72 (2021)

    ADS  MathSciNet  Google Scholar 

  50. Ren, R., Li, P., Ye, M., et al.: Tighter sum uncertainty relations based on metric-adjusted skew information. Phys. Rev. A 104(5), 052414 (2021)

    ADS  MathSciNet  Google Scholar 

  51. Ren, R., Li, Y.: Uncertainty relation based on metric-adjusted skew information with quantum memory. Laser Phys. 33(1), 015203 (2022)

    ADS  Google Scholar 

  52. Ma, X., Zhang, Q.H., Fei, S.M.: Product and sum uncertainty relations based on metric-adjusted skew information. Laser Phys. Lett. 19(5), 055205 (2022)

    ADS  Google Scholar 

  53. Li, H., Gao, T., Yan, F.: Tighter sum uncertainty relations via metric-adjusted skew information. Phys. Scr. 98(1), 015024 (2022)

    ADS  Google Scholar 

  54. Luo, S., Sun, Y.: Some Inequalities for Wigner-Yanase Skew Information//Information Geometry and Its Applications: On the Occasion of Shun-ichi Amari’s 80th Birthday, IGAIA IV Liblice, Czech Republic. Springer International Publishing 2018, 377–398 (2016)

    ADS  Google Scholar 

  55. Holevo, A.S.: Statistical decision theory for quantum systems. J. Multivar. Anal. 3(4), 337–394 (1973)

    MathSciNet  Google Scholar 

  56. Yuen, H., Kennedy, R., Lax, M.: Optimum testing of multiple hypotheses in quantum detection theory. IEEE Trans. Inf. Theory 21(2), 125–134 (1975)

    MathSciNet  Google Scholar 

  57. Helstrom, C.W.: Quantum detection and estimation theory. J. Stat. Phys. 1, 231–252 (1969)

    ADS  MathSciNet  Google Scholar 

  58. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72(22), 3439 (1994)

    ADS  MathSciNet  Google Scholar 

  59. Shun-Long, L.: Fisher information of wavefunctions: Classical and quantum. Chin. Phys. Lett. 23(12), 3127 (2006)

    ADS  Google Scholar 

  60. Wigner, E.P., Yanase, M.M.: Information contents of distributions. Proc. Natl. Acad. Sci. 49(6), 910–918 (1963)

    ADS  MathSciNet  Google Scholar 

  61. Lieb, E H.: Convex trace functions and the Wigner-Yanase-Dyson conjecture. Les Rencontres Physiciens-Math\(\acute{e}\)maticiens de Strasbourg-RCP25 19, 0–35 (1973)

  62. Luo, S., Zhang, Q.: Superadditivity of Wigner–Yanase–Dyson information revisited. J. Stat. Phys. 131, 1169–1177 (2008)

    ADS  MathSciNet  Google Scholar 

  63. Hansen, F.: WYD-like skew information measures. J. Stat. Phys. 151, 974–979 (2013)

    ADS  MathSciNet  Google Scholar 

  64. Sun, Y., Li, N.: The uncertainty of quantum channels in terms of variance. Quantum Inf. Process. 20, 1–15 (2021)

    MathSciNet  Google Scholar 

  65. Bischof, F., Kampermann, H., Bru, D.: Quantifying coherence with respect to general quantum measurements. Phys. Rev. A 103(3), 032429 (2021)

    ADS  MathSciNet  Google Scholar 

  66. Xu, J., Shao, L.H., Fei, S.M.: Coherence measures with respect to general quantum measurements. Phys. Rev. A 102(1), 012411 (2020)

    ADS  MathSciNet  Google Scholar 

  67. Oreshkov, O., Brun, T.A.: Weak measurements are universal. Phys. Rev. Lett. 95(11), 110409 (2005)

    ADS  Google Scholar 

  68. Luo, S., Sun, Y.: Coherence and complementarity in state-channel interaction. Phys. Rev. A 98(1), 012113 (2018)

    ADS  Google Scholar 

Download references

Acknowledgements

Ruonan Ren was supported by the Fundamental Research Funds For the Central Universities (Grant No: LHRCTS23057). Yu Luo was supported by the National Natural Science Foundation of China (GrantNo.62001274). Yongming Li was supported by the National Science Foundation of China (Grant Nos. 12071271, 11671244).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongming Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The proof of contractivity (x)

Appendix: The proof of contractivity (x)

(x)   (Contractivity)

$$\begin{aligned} I_f\left( \left( \mathcal {I}^a\otimes \Phi ^b\right) \left( \rho ^{ab}\right) , \Phi ^a\otimes \mathcal {I}^b\right) \le I_f\left( \rho ^{ab},\Phi ^a\otimes \mathcal {I}^b\right) , \end{aligned}$$

where \(\mathcal {I}^a\) and \(\Phi ^a\) are channels on party a, and \(\mathcal {I}^b\) and \(\Phi ^b\) are channels on part b.

Proof

Similarly to Ref. [68], we prove this property in two ways.

Method 1: Obviously, the channel \(\mathcal {I}^a\otimes \Phi ^b\) is not disturb the channel \(\Phi ^a\otimes \mathcal {I}^b\). Therefore, according to the item (vii), we have item (x).

Method 2: For any channel \(\Phi ^b\), there is an auxiliary system c with a state \(\rho ^c\) and a unitary operator \(U^{bc}\) on the combined system bc, such that

$$\begin{aligned}{} & {} I_f\left( \left( \mathcal {I}^a\otimes \Phi ^b\right) \left( \rho ^{ab}\right) , \Phi ^a\otimes \mathcal {I}^b\right) \\{} & {} \quad =I_f\left( \textrm{Tr}_c\left( \mathcal {I}^a\otimes U^{bc}\right) \left( \rho ^{ab}\otimes \rho ^c\right) \left( \mathcal {I}^a\otimes U^{bc}\right) ^\dagger , \Phi ^a\otimes \mathcal {I}^b\right) \\{} & {} \quad \le I_f\left( \left( \mathcal {I}^a\otimes U^{bc}\right) \left( \rho ^{ab}\otimes \rho ^c\right) \left( \mathcal {I}^a\otimes U^{bc}\right) ^\dagger , \Phi ^a\otimes \mathcal {I}^b\otimes \mathcal {I}^c\right) \\{} & {} \quad = I_f\left( \rho ^{ab}\otimes \rho ^c, \left( \mathcal {I}^a\otimes U^{bc}\right) ^\dagger \left( \Phi ^a\otimes \mathcal {I}^b\otimes \mathcal {I}^c\right) \left( \mathcal {I}^a\otimes U^{bc}\right) \right) \\{} & {} \quad = I_f\left( \rho ^{ab}\otimes \rho ^c, \Phi ^a\otimes \mathcal {I}^b\otimes \mathcal {I}^c\right) \\{} & {} \quad = I_f\left( \rho ^{ab},\Phi ^a\otimes \mathcal {I}^b\right) , \end{aligned}$$

where the inequality is given by item (vi), the second equality is given by item (ii), and the last equality is given by item (v). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, R., Luo, Y. & Li, Y. Quantifying correlations relative to channels via metric-adjusted skew information. Quantum Inf Process 23, 98 (2024). https://doi.org/10.1007/s11128-024-04300-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04300-5

Keywords

Navigation