Skip to main content
Log in

Quantum image compression with autoencoders based on parameterized quantum circuits

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The analysis and processing of digital images play a vital role in information processing. However, the pixel-based operations on images often lead to significant complexity as the image data grow rapidly. Encoding images into a quantum system and leveraging the principles of superposition and entanglement offer a chance to alleviate the challenges. A further improvement in efficiency is promising by combining quantum image processing with machine learning algorithms. Here a quantum autoencoder is trained to compress the image data into a lower-dimensional space using a hybrid quantum-classical control approach. The optimization of the parameterized quantum circuit involves the measurement of simple observables, alleviating the computational burden associated with the calculation of cost functions and gradients. We applied our quantum autoencoder to compress the MNIST handwritten digit dataset. The results exhibit the feasibility and effectiveness of the quantum compression approach. This work highlights the potential application of quantum neural networks in achieving high-efficiency quantum image processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available upon reasonable request.

References

  1. Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. Math. Phys. Eng. Sci. 400(1818), 97–117 (1985)

    MathSciNet  Google Scholar 

  2. Knill, E.: Quantum computing with realistically noisy devices. Nature 434(7029), 39–44 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Harrow, A.W., Montanaro, A.: Quantum computational supremacy. Nature 549(7671), 203–209 (2017)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Lloyd, S.: Universal quantum simulators. Science 273(5278), 1073–1078 (1996)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  5. Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys. 86(1), 153 (2014)

    Article  ADS  Google Scholar 

  6. Li, J., Fan, R., Wang, H., Ye, B., Zeng, B., Zhai, H., Peng, X., Du, J.: Measuring out-of-time-order correlators on a nuclear magnetic resonance quantum simulator. Phys. Rev. X 7(3), 031011 (2017)

    Google Scholar 

  7. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE (1994)

  8. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)

  9. Xu, N., Zhu, J., Lu, D., Zhou, X., Peng, X., Du, J.: Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system. Phys. Rev. Lett. 108(13), 130501 (2012)

    Article  ADS  PubMed  Google Scholar 

  10. Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quantum Inf. Process. 15, 1–35 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. Venegas-Andraca, S.E., Bose, S.: Storing, processing, and retrieving an image using quantum mechanics. Quantum Inf. Comput. 5105, 137–147 (2003)

    ADS  Google Scholar 

  12. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10, 63–84 (2011)

    Article  MathSciNet  Google Scholar 

  13. Li, H.-S., Zhu, Q., Zhou, R.-G., Song, L., Yang, X.-J.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf. Process. 13, 991–1011 (2014)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  14. Yao, X.-W., Wang, H., Liao, Z., Chen, M.-C., Pan, J., Li, J., Zhang, K., Lin, X., Wang, Z., Luo, Z., et al.: Quantum image processing and its application to edge detection: theory and experiment. Phys. Rev. X 7(3), 031041 (2017)

    Google Scholar 

  15. Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Strategies for designing geometric transformations on quantum images. Theor. Comput. Sci. 412(15), 1406–1418 (2011)

    Article  MathSciNet  Google Scholar 

  16. Zhang, Y., Lu, K., Xu, K., Gao, Y., Wilson, R.: Local feature point extraction for quantum images. Quantum Inf. Process. 14, 1573–1588 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  17. Caraiman, S., Manta, V.I.: Histogram-based segmentation of quantum images. Theor. Comput. Sci. 529, 46–60 (2014)

    Article  MathSciNet  Google Scholar 

  18. Jiang, N., Wu, W.-Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  19. Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186(1), 126–149 (2012)

    Article  MathSciNet  Google Scholar 

  20. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113(13), 130503 (2014)

    Article  ADS  PubMed  Google Scholar 

  21. Schuld, M., Killoran, N.: Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 122(4), 040504 (2019)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Circuit-centric quantum classifiers. Phys. Rev. A 101(3), 032308 (2020)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  23. Havlíček, V., Córcoles, A.D., Temme, K., Harrow, A.W., Kandala, A., Chow, J.M., Gambetta, J.M.: Supervised learning with quantum-enhanced feature spaces. Nature 567(7747), 209–212 (2019)

    Article  ADS  PubMed  Google Scholar 

  24. Romero, J., Olson, J.P., Aspuru-Guzik, A.: Quantum autoencoders for efficient compression of quantum data. Quantum Sci. Technol. 2(4), 045001 (2017)

    Article  ADS  Google Scholar 

  25. Cao, C., Wang, X.: Noise-assisted quantum autoencoder. Phys. Rev. Appl. 15(5), 054012 (2021)

    Article  ADS  CAS  Google Scholar 

  26. Pepper, A., Tischler, N., Pryde, G.J.: Experimental realization of a quantum autoencoder: the compression of qutrits via machine learning. Phys. Rev. Lett. 122(6), 060501 (2019)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Sleeman, J., Dorband, J., Halem, M.: A hybrid quantum enabled RBM advantage: convolutional autoencoders for quantum image compression and generative learning. In: Quantum Information Science, Sensing, and Computation XII, vol. 11391, pp. 23–38. SPIE (2020)

  28. Verdon, G., Broughton, M., Biamonte, J.: A quantum algorithm to train neural networks using low-depth circuits (2017). arXiv preprint arXiv:1712.05304

  29. Benedetti, M., Garcia-Pintos, D., Perdomo, O., Leyton-Ortega, V., Nam, Y., Perdomo-Ortiz, A.: A generative modeling approach for benchmarking and training shallow quantum circuits. npj Quantum Inf. 5(1), 45 (2019)

    Article  ADS  Google Scholar 

  30. Beer, K., Bondarenko, D., Farrelly, T., Osborne, T.J., Salzmann, R., Scheiermann, D., Wolf, R.: Training deep quantum neural networks. Nat. Commun. 11(1), 808 (2020)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cong, I., Choi, S., Lukin, M.D.: Quantum convolutional neural networks. Nat. Phys. 15(12), 1273–1278 (2019)

    Article  CAS  Google Scholar 

  32. Pesah, A., Cerezo, M., Wang, S., Volkoff, T., Sornborger, A.T., Coles, P.J.: Absence of barren plateaus in quantum convolutional neural networks. Phys. Rev. X 11(4), 041011 (2021)

    CAS  Google Scholar 

  33. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  34. Cai, X.-D., Weedbrook, C., Su, Z.-E., Chen, M.-C., Gu, M., Zhu, M.-J., Li, L., Liu, N.-L., Lu, C.-Y., Pan, J.-W.: Experimental quantum computing to solve systems of linear equations. Phys. Rev. Lett. 110(23), 230501 (2013)

    Article  ADS  PubMed  Google Scholar 

  35. Pan, J., Cao, Y., Yao, X., Li, Z., Ju, C., Chen, H., Peng, X., Kais, S., Du, J.: Experimental realization of quantum algorithm for solving linear systems of equations. Phys. Rev. A 89(2), 022313 (2014)

    Article  ADS  Google Scholar 

  36. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 631–633 (2014)

    Article  CAS  Google Scholar 

  37. Xin, T., Che, L., Xi, C., Singh, A., Nie, X., Li, J., Dong, Y., Lu, D.: Experimental quantum principal component analysis via parametrized quantum circuits. Phys. Rev. Lett. 126(11), 110502 (2021)

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Gómez-Bombarelli, R., Wei, J.N., Duvenaud, D., Hernández-Lobato, J.M., Sánchez-Lengeling, B., Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T.D., Adams, R.P., Aspuru-Guzik, A.: Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4(2), 268–276 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  39. Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., Lew, M.S.: Deep learning for visual understanding: a review. Neurocomputing 187, 27–48 (2016)

    Article  Google Scholar 

  40. Khandelwal, A., Chandra, M.G., Pramanik, S.: On classifying images using quantum image representation. In: 2022 IEEE/ACM 7th Symposium on Edge Computing (SEC), pp. 444–449. IEEE (2022)

  41. Li, J., Yang, X., Peng, X., Sun, C.-P.: Hybrid quantum-classical approach to quantum optimal control. Phys. Rev. Lett. 118(15), 150503 (2017)

    Article  ADS  PubMed  Google Scholar 

  42. Zhang, Y., Lu, K., Gao, Y., Wang, M.: Neqr: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12, 2833–2860 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  43. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Phys. Rev. Lett. 100(16), 160501 (2008)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  44. Grover, L., Rudolph, T.: Creating superpositions that correspond to efficiently integrable probability distributions (2002). arXiv preprint arXiv:quant-ph/0208112

  45. Soklakov, A.N., Schack, R.: Efficient state preparation for a register of quantum bits. Phys. Rev. A 73(1), 012307 (2006)

    Article  ADS  Google Scholar 

  46. Ashhab, S.: Quantum state preparation protocol for encoding classical data into the amplitudes of a quantum information processing register’s wave function. Phys. Rev. Res. 4(1), 013091 (2022)

    Article  CAS  Google Scholar 

  47. Ma, H., Huang, C.-J., Chen, C., Dong, D., Wang, Y., Wu, R.-B., Xiang, G.-Y.: On compression rate of quantum autoencoders: control design, numerical and experimental realization. Automatica 147, 110659 (2023)

    Article  MathSciNet  Google Scholar 

  48. Verdon, G., Pye, J., Broughton, M.: A universal training algorithm for quantum deep learning (2018). arXiv preprint arXiv:1806.09729

  49. Vatan, F., Williams, C.: Optimal quantum circuits for general two-qubit gates. Phys. Rev. A 69(3), 032315 (2004)

    Article  ADS  Google Scholar 

  50. Hanneke, D., Home, J., Jost, J.D., Amini, J.M., Leibfried, D., Wineland, D.J.: Realization of a programmable two-qubit quantum processor. Nat. Phys. 6(1), 13–16 (2010)

    Article  CAS  Google Scholar 

  51. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2010)

  52. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  ADS  PubMed  Google Scholar 

  53. Wei, S.-J., Long, G.-L.: Duality quantum computer and the efficient quantum simulations. Quantum Inf. Process. 15, 1189–1212 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  54. Wiebe, N., Braun, D., Lloyd, S.: Quantum algorithm for data fitting. Phys. Rev. Lett. 109(5), 050505 (2012)

    Article  ADS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants No. 12075206 and No. 11905184).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenqiang Zheng.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Tan, J., Huang, Y. et al. Quantum image compression with autoencoders based on parameterized quantum circuits. Quantum Inf Process 23, 41 (2024). https://doi.org/10.1007/s11128-023-04243-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04243-3

Keywords

Navigation