Skip to main content
Log in

Denoising quantum mixed states using quantum autoencoders

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The presence of noise affects the process of quantum computing and quantum communication, and quantum autoencoders (QAEs) provide a new solution for dealing with this problem. Previous study has shown that QAEs could denoise pure quantum states subject to spin-flip errors and random unitary noise (Bondarenko and Feldmann Phys Rev Lett 124: 130502, 2020). However, avoiding or reducing the interference of noise on mixed states remains an interesting problem in quantum communication and quantum computing. In this paper, the denoising effect of QAEs for mixed states is studied. We investigate the denoising effect of QAEs for a specific type of mixed states in four types of noise usually encountered in the real world, i.e., the bit-flip, the phase-flip, the depolarizing, and the amplitude-damping noise. Simulation results show that the QAEs can significantly denoise four types of noise on mixed states with different noisy and mixed parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning, pp. 45–85. MIT Press, Cambridge (2016)

    Google Scholar 

  3. Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: A survey of deep neural network architectures and their applications. Neurocomputing 234, 11 (2017)

    Article  Google Scholar 

  4. Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., Lew, M.S.: Deep learning for visual understanding: a review. Neurocomputing 187, 27 (2016)

    Article  Google Scholar 

  5. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484 (1997)

    Article  MathSciNet  Google Scholar 

  6. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)

    Article  ADS  CAS  Google Scholar 

  7. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  8. Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56(2), 172 (2015)

    Article  ADS  Google Scholar 

  9. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549(7671), 195 (2017)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Kak, S.: On quantum neural computing. Inf. Sci. 83(3), 143 (1995)

    Article  MathSciNet  Google Scholar 

  11. Ronald, C.: Quantum learning. In: New Directions in Cognitive Science: Proceedings of the International Symposium, pp. 4–9 (1995)

  12. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113(13), 130503 (2014)

    Article  ADS  PubMed  Google Scholar 

  13. Li, Z., Liu, X., Xu, N., Du, J.: Experimental realization of a quantum support vector machine. Phys. Rev. Lett. 114(14), 140504 (2015)

    Article  ADS  PubMed  Google Scholar 

  14. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 631 (2014)

    Article  CAS  Google Scholar 

  15. Aïmeur, E., Brassard, G., Gambs, S.: Machine learning in a quantum world. In: Conference of the Canadian Society for Computational Studies of Intelligence, pp. 431–442 (2006)

  16. Aïmeur, E., Brassard, G., Gambs, S.: Quantum speed-up for unsupervised learning. Mach. Learn. 90(2), 261 (2013)

    Article  MathSciNet  Google Scholar 

  17. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum algorithms for supervised and unsupervised machine learning, arXiv preprint, arXiv:1307.0411, (2013)

  18. Behrman, E., Niemel, J., Steck, J.: A quantum dot neural network. In: Proceedings of the 4th Workshop on Physics and Computation, pp. 22–24 (1996)

  19. Ventura, D., Martinez, T., Smith, G.D., Steele, N.C., Albrecht, R.F.: An artificial neuron with quantum mechanical properties. In: Artificial Neural Nets and Genetic Algorithms, pp. 482–485 (1998)

  20. Matsui, N., Takai, M., Nishimura, H.: A network model based on Qubitlike neuron corresponding to quantum circuit. Electron. Commun. Jpn. 83(10), 67 (2000)

    Article  Google Scholar 

  21. Schuld, M., Sinayskiy, I., Petruccione, F.: Quantum walks on graphs representing the firing patterns of a quantum neural network. Phys. Rev. A 89(3), 032333 (2014)

    Article  ADS  Google Scholar 

  22. Beer, K., Bondarenko, D., Farrelly, T., Osborne, T.J., Salzmann, R., Scheiermann, D., Wolf, R.: Training deep quantum neural networks. Nat. Commun. 11(1), 808 (2020)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Amin, M.H., Andriyash, E., Rolfe, J., Kulchytskyy, B., Melko, R.: Quantum Boltzmann machine. Phys. Rev. X 8(2), 021050 (2018)

    CAS  Google Scholar 

  24. Wiebe, N., Kapoor, A., Svore, K.M.: Quantum deep learning, arXiv preprint, arXiv:1412.3489, (2014)

  25. Cong, I., Choi, S., Lukin, M.D.: Quantum convolutional neural networks. Nat. Phys. 15(12), 1273 (2019)

    Article  CAS  Google Scholar 

  26. Lloyd, S., Weedbrook, C.: Quantum generative adversarial learning. Phys. Rev. Lett. 121(4), 040502 (2018)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  27. Romero, J., Olson, J.P., Aspuru-Guzik, A.: Quantum autoencoders for efficient compression of quantum data. Quantum Sci. Technol. 2(4), 045001 (2017)

    Article  ADS  Google Scholar 

  28. Bondarenko, D., Feldmann, P.: Quantum autoencoders to denoise quantum data. Phys. Rev. Lett. 124(13), 130502 (2020)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Bravo-Prieto, C.: Quantum autoencoders with enhanced data encoding. Mach. Learn. Sci. Technol. 2, 035028 (2021)

    Article  Google Scholar 

  30. Pepper, A., Tischler, N., Pryde, G.J.: Experimental realization of a quantum autoencoder: the compression of qutrits via machine learning. Phys. Rev. Lett. 122(6), 060501 (2019)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Huang, C.J., Ma, H., Yin, Q., Tang, J.F., Dong, D., Chen, C., Xiang, G.Y., Li, C.F., Guo, G.C.: Realization of a quantum autoencoder for lossless compression of quantum data. Phys. Rev. A 102(3), 032412 (2020)

    Article  ADS  CAS  Google Scholar 

  32. Locher, D.F., Cardarelli, L., Müller, M.: Quantum error correction with quantum autoencoders. Quantum 7, 942 (2023)

    Article  Google Scholar 

  33. Khoshaman, A., Vinci, W., Denis, B., Andriyash, E., Sadeghi, H., Amin, M.H.: Quantum variational autoencoder. Quantum Sci. Technol. 4(1), 014001 (2018)

    Article  ADS  Google Scholar 

  34. Achache, T., Horesh, L., Smolin, J.: Denoising quantum states with quantum autoencoders - theory and applications, arXiv preprint, arXiv:2012.14714, (2020)

  35. Cao, C., Wang, X.: Noise-assisted quantum autoencoder. Phys. Rev. Appl. 15(5), 054012 (2021)

    Article  ADS  CAS  Google Scholar 

  36. Kong, W., Farooq, M.U., Yung, M.H., Guo, G., Wang, X., Zhang, X.M.: Generic detection-based error mitigation using quantum autoencoders. Phys. Rev. A 103(4), L040403 (2021)

    Article  Google Scholar 

  37. Pazem, J.: Error mitigation of entangled states using brainbox quantum autoencoders, arXiv preprint, arXiv:2303.01134, (2023)

  38. Tran, Q.H., Kikuchi, S., Oshima, H.: Variational denoising for variational quantum eigensolver, arXiv preprint, arXiv:2304.00549, (2023)

  39. Mok, W.K., Zhang, H., Haug, T., Luo, X., Lo, G.Q., Cai, H., Kim, M.S., Liu, A.Q., Kwek, L.C.: Rigorous noise reduction with quantum autoencoders, arXiv preprint, arXiv:2308.16153, (2023)

  40. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  41. Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Optic. 41(12), 2315 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  42. Uhlmann, A.: The “transition probability’’ in the state space of a *-algebra. Rep. Math. Phys. 9(2), 273 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  43. Wang, X., Yu, C.S., Yi, X.X.: An alternative quantum fidelity for mixed states of qudits. Phys. Lett. A 373(1), 58 (2008)

    Article  ADS  CAS  Google Scholar 

  44. Liang, Y.C., Yeh, Y.H., Mendonça, P.E.M.F., Teh, R.Y., Reid, M.D., Drummond, P.D.: Quantum fidelity measures for mixed states. Rep. Prog. Phys. 82(7), 076001 (2019)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Grant No. 61601358).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Ming Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, MM. Denoising quantum mixed states using quantum autoencoders. Quantum Inf Process 23, 30 (2024). https://doi.org/10.1007/s11128-023-04239-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04239-z

Keywords

Navigation