Skip to main content
Log in

Quantum kernel estimation-based quantum support vector regression

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum machine learning endeavors to exploit quantum mechanical effects like superposition, entanglement, and interference to enhance the capabilities of classical machine learning methods. One of the most researched quantum machine learning methodologies presently is the quantum support vector machine (QSVM). Researchers have now developed quantum support vector classifiers and substantiated their potential for accelerating computation and enhancing classification accuracy in practical contexts through experimentation. Nevertheless, the utility of QSVM in regression tasks remains a relatively uncharted territory. In light of this, we introduce a quantum kernel estimation-based quantum support vector regression (QKE-QSVR) model for completing regression tasks. Within this proposed model, classical inputs are encoded as quantum feature vectors using the designed quantum feature map circuit with a variable parameter. The inner product between quantum feature vectors give rise to a trainable quantum kernel, which is subject to optimization through our proposed quantum kernel alignment-based regression (QKAR) algorithm, thereby bolstering the model's predictive accuracy when applied to a specific dataset. Subsequently, the trained quantum kernel is incorporated into the classical support vector regression process to construct the decision function and provide predictions for new data points. In this study, we validate the efficacy of the proposed model using three illustrative examples. Experimental findings underscore that, in comparison to the classical support vector machine model, our proposed model demonstrates superior predictive accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets analyzed during the current study can be obtained from the corresponding author upon reasonable request.

References

  1. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549(7671), 195–202 (2017)

    Article  ADS  Google Scholar 

  2. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  3. Grover, L. K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the twenty-eighth annual ACM symposium on Theory of computing. pp. 212–219 (1996)

  4. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  5. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113(13), 130503 (2014)

    Article  ADS  Google Scholar 

  6. Liu, Y., Arunachalam, S., Temme, K.: A rigorous and robust quantum speed-up in supervised machine learning. Nat. Phys. 17(9), 1013–1017 (2021)

    Article  Google Scholar 

  7. Gao, X., Zhang, Z.-Y., Duan, L.-M.: A quantum machine learning algorithm based on generative models. Sci. Adv. 4(12), eaat9004 (2018)

    Article  ADS  Google Scholar 

  8. Abbas, A., Sutter, D., Zoufal, C., Lucchi, A., Figalli, A., Woerner, S.: The power of quantum neural networks. Nat. Comput. Sci. 1(6), 403–409 (2021)

    Article  Google Scholar 

  9. Du, Y., Hsieh, M.-H., Liu, T., Tao, D.: Expressive power of parametrized quantum circuits. Phys. Rev. Res. 2(3), 033125 (2020)

    Article  Google Scholar 

  10. Wright, L.G., McMahon, P.L.: The Capacity of Quantum Neural Networks. p. JM4G. 5, CLEO: Science and Innovations: Optica Publishing Group (2020)

  11. Jäger, J., Krems, R.V.: Universal expressiveness of variational quantum classifiers and quantum kernels for support vector machines. Nat. Commun. 14(1), 576 (2023)

    Article  ADS  Google Scholar 

  12. Caro, M.C., Huang, H.-Y., Cerezo, M., Sharma, K., Sornborger, A., Cincio, L., et al.: Generalization in quantum machine learning from few training data. Nat. Commun. 13(1), 1–11 (2022)

    Article  Google Scholar 

  13. Devitt, S.J., Stephens, A.M., Munro, W.J., Nemoto, K.: Requirements for fault-tolerant factoring on an atom-optics quantum computer. Nat. Commun. 4(1), 2524 (2013)

    Article  ADS  Google Scholar 

  14. Roetteler, M., Naehrig, M., Svore, K. M., Lauter, K.: Quantum resource estimates for computing elliptic curve discrete logarithms. Advances in Cryptology–ASIACRYPT 2017: 23rd International Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong, China, December 3–7, 2017, Proceedings, Part II 23: Springer; 2017. pp. 241–270

  15. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  16. Leymann, F., Barzen, J.: The bitter truth about gate-based quantum algorithms in the NISQ era. Quantum Sci. Technol. 5(4), 044007 (2020)

    Article  ADS  Google Scholar 

  17. Park, J.-E., Quanz, B., Wood, S., Higgins, H., Harishankar, R.: Practical application improvement to Quantum SVM: theory to practice. arXiv preprint arXiv:201207725. (2020)

  18. Wu, S.L., Sun, S., Guan, W., Zhou, C., Chan, J., Cheng, C.L., et al.: Application of quantum machine learning using the quantum kernel algorithm on high energy physics analysis at the LHC. Phys. Rev. Res. 3(3), 033221 (2021)

    Article  Google Scholar 

  19. Hubregtsen, T., Wierichs, D., Gil-Fuster, E., Derks, P.-J.H., Faehrmann, P.K., Meyer, J.J.: Training quantum embedding kernels on near-term quantum computers. Phys. Rev. A 106(4), 042431 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  20. Nohara, T., Oyama, S., Noda, I.: Pairwise classification using quantum support vector machine with Kronecker kernel. Quantum Mach. Intell. 4(2), 22 (2022)

    Article  Google Scholar 

  21. Heyraud, V., Li, Z., Denis, Z., Le Boité, A., Ciuti, C.: Noisy quantum kernel machines. Phys. Rev. A 106(5), 052421 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  22. Torabian, E., Krems, R.V.: Compositional optimization of quantum circuits for quantum kernels of support vector machines. Phys. Rev. Res. 5(1), 013211 (2023)

    Article  Google Scholar 

  23. Gambetta, J.: IBM’s roadmap for scaling quantum technology. IBM Research Blog (September 2020). (2020)

  24. Sivak, V., Eickbusch, A., Royer, B., Singh, S., Tsioutsios, I., Ganjam, S., et al.: Real-time quantum error correction beyond break-even. Nature 616(7955), 50–55 (2023)

    Article  ADS  Google Scholar 

  25. Krinner, S., Lacroix, N., Remm, A., Di Paolo, A., Genois, E., Leroux, C., et al.: Realizing repeated quantum error correction in a distance-three surface code. Nature 605(7911), 669–674 (2022)

    Article  ADS  Google Scholar 

  26. Lloyd, S., Schuld, M., Ijaz, A., Izaac, J., Killoran, N.: Quantum embeddings for machine learning. arXiv preprint arXiv:200103622. (2020)

  27. Havlíček, V., Córcoles, A.D., Temme, K., Harrow, A.W., Kandala, A., Chow, J.M., et al.: Supervised learning with quantum-enhanced feature spaces. Nature 567(7747), 209–212 (2019)

    Article  ADS  Google Scholar 

  28. Huang, H.-Y., Broughton, M., Mohseni, M., Babbush, R., Boixo, S., Neven, H., et al.: Power of data in quantum machine learning. Nat. Commun. 12(1), 1–9 (2021)

    Google Scholar 

  29. De Luca, G.: A survey of NISQ era hybrid quantum-classical machine learning research. J. Artif. Intell. Technol. 2(1), 9–15 (2022)

    Google Scholar 

  30. McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nat. Commun. 9(1), 4812 (2018)

    Article  ADS  Google Scholar 

  31. Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022)

    Article  ADS  Google Scholar 

  32. Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nat. Commun. 12(1), 1791 (2021)

    Article  ADS  Google Scholar 

  33. Patti, T.L., Najafi, K., Gao, X., Yelin, S.F.: Entanglement devised barren plateau mitigation. Phys. Rev. Res. 3(3), 033090 (2021)

    Article  Google Scholar 

  34. Cincio, L., Subaşı, Y., Sornborger, A.T., Coles, P.J.: Learning the quantum algorithm for state overlap. New J. Phys. 20(11), 113022 (2018)

    Article  ADS  Google Scholar 

  35. Schuld, M.: Supervised quantum machine learning models are kernel methods. arXiv preprint arXiv:210111020. (2021)

  36. Srikumar, M., Hill, C. D., Hollenberg, L. C.: A kernel-based quantum random forest for improved classification. arXiv preprint arXiv:221002355. (2022)

  37. Paine, A.E., Elfving, V.E., Kyriienko, O.: Quantum kernel methods for solving regression problems and differential equations. Phys. Rev. A 107(3), 032428 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  38. Sancho-Lorente, T., Román-Roche, J., Zueco, D.: Quantum kernels to learn the phases of quantum matter. Phys. Rev. A 105(4), 042432 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  39. Tancara, D., Dinani, H.T., Norambuena, A., Fanchini, F.F., Coto, R.: Kernel-based quantum regressor models learning non-Markovianity. Phys. Rev. A 107(2), 022402 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  40. Fadol, A., Sha, Q., Fang, Y., Li, Z., Qian, S., Xiao, Y., et al.: Application of Quantum Machine Learning in a Higgs Physics Study at the CEPC. arXiv preprint arXiv:220912788. (2022)

  41. Mensa, S., Sahin, E., Tacchino, F., Barkoutsos, P. K., Tavernelli, I.: Quantum Machine Learning Framework for Virtual Screening in Drug Discovery: A Prospective Quantum Advantage. arXiv preprint arXiv:220404017. (2022)

  42. Gawriljuk, V.O., Zin, P.P.K., Puhl, A.C., Zorn, K.M., Foil, D.H., Lane, T.R., et al.: Machine learning models identify inhibitors of SARS-CoV-2. J. Chem. Inf. Model. 61(9), 4224–4235 (2021)

    Article  Google Scholar 

  43. Adorio, E. P., Diliman, U.: Mvf-multivariate test functions library in c for unconstrained global optimization. Quezon City, Metro Manila, Philippines. 44. (2005)

  44. Molga, M., Smutnicki, C.: Test functions for optimization needs. Test Funct. Optim. Needs 101, 48 (2005)

    Google Scholar 

  45. Brooks, T. F., Pope, D. S., Marcolini, M. A.: Airfoil self-noise and prediction. (1989)

  46. Benedetti, M., Lloyd, E., Sack, S., Fiorentini, M.: Parameterized quantum circuits as machine learning models. Quantum Sci. Technol. 4(4), 043001 (2019)

    Article  ADS  Google Scholar 

  47. Van Beers, W.C., Kleijnen, J.P.: Kriging for interpolation in random simulation. J. Oper. Res. Soc. 54, 255–262 (2003)

    Article  Google Scholar 

  48. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    Article  Google Scholar 

  49. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14(3), 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  50. Awad, M., Khanna, R., Awad, M., Khanna, R.: Support vector regression. Efficient learning machines: Theories, concepts, and applications for engineers and system designers. 67–80 (2015)

  51. Schölkopf, B., Smola, A. J., Bach, F.: Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press. (2002)

  52. Kashima, H., Idé, T., Kato, T., Sugiyama, M.: Recent advances and trends in large-scale kernel methods. IEICE Trans. Inf. Syst. 92(7), 1338–1353 (2009)

    Article  Google Scholar 

  53. Thanasilp, S., Wang, S., Cerezo, M., Holmes, Z.: Exponential concentration and untrainability in quantum kernel methods. arXiv preprint arXiv:220811060. (2022)

  54. Larocca, M., Sauvage, F., Sbahi, F.M., Verdon, G., Coles, P.J., Cerezo, M.: Group-invariant quantum machine learning. PRX. Quantum 3(3), 030341 (2022)

    ADS  Google Scholar 

  55. Skolik, A., Cattelan, M., Yarkoni, S., Bäck, T., Dunjko, V.: Equivariant quantum circuits for learning on weighted graphs. NPJ Quantum Inf. 9(1), 47 (2023)

    Article  ADS  Google Scholar 

  56. Meyer, J.J., Mularski, M., Gil-Fuster, E., Mele, A.A., Arzani, F., Wilms, A., et al.: Exploiting symmetry in variational quantum machine learning. PRX Quantum. 4(1), 010328 (2023)

    Article  ADS  Google Scholar 

  57. Glick, J. R., Gujarati, T. P., Corcoles, A. D., Kim, Y., Kandala, A., Gambetta, J. M., et al.: Covariant quantum kernels for data with group structure. arXiv preprint arXiv:210503406. (2021)

  58. Cortes, C., Mohri, M., Rostamizadeh, A.: Algorithms for learning kernels based on centered alignment. J. Mach. Learn. Res. 13(1), 795–828 (2012)

    MathSciNet  Google Scholar 

  59. Bullins, B., Zhang, C., Zhang, Y.: Not-so-random features. arXiv preprint arXiv:171010230. (2017)

  60. Shawe-Taylor, J., Cristianini, N.: On the generalization of soft margin algorithms. IEEE Trans. Inf. Theory 48(10), 2721–2735 (2002)

    Article  MathSciNet  Google Scholar 

  61. Spall, J.C.: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans. Autom. Control 37(3), 332–341 (1992)

    Article  MathSciNet  Google Scholar 

  62. Pellow-Jarman, A., Sinayskiy, I., Pillay, A., Petruccione, F.: A comparison of various classical optimizers for a variational quantum linear solver. Quantum Inf. Process. 20(6), 202 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  63. Aleksandrowicz, G., Alexander, T., Barkoutsos, P., Bello, L., Ben-Haim, Y., Bucher, D., et al.: Qiskit: An open-source framework for quantum computing. Accessed on Mar 16 (2019)

  64. Suzuki, Y., Yano, H., Gao, Q., Uno, S., Tanaka, T., Akiyama, M., et al.: Analysis and synthesis of feature map for kernel-based quantum classifier. Quantum Mach. Intell. 2, 1–9 (2020)

    Article  Google Scholar 

  65. Schuld, M., Killoran, N.: Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 122(4), 040504 (2019)

    Article  ADS  Google Scholar 

  66. Krunic, Z., Flöther, F.F., Seegan, G., Earnest-Noble, N.D., Shehab, O.: Quantum kernels for real-world predictions based on electronic health records. IEEE Trans. Quantum Eng. 3, 1–11 (2022)

    Article  Google Scholar 

  67. Li, W., Deng, D.-L.: Recent advances for quantum classifiers. Sci. China Phys. Mech. Astron. 65(2), 220301 (2022)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The funding provided for this study by the National Natural Science Foundation of China under Grant No.71872088, 71904078 and 71401080, the Social Science Foundation of Jiangsu under Grant No.17GLB016, Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant number: KYCX22_0881 and KYCX23_0934), the State Scholarship Fund of China under Grant No.201508320059, 1311 Talent Fund of NJUPT, the Science Foundation of Jiangsu under Grant No.BK20190793, the Project of Philosophy and Social Science Research in Colleges and Universities in Jiangsu Province under Grant No. 2018SJA0263 and Social Science Foundation of NJUPT under Grant No.NY218064 are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Jiang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Yu, J., Tan, J. et al. Quantum kernel estimation-based quantum support vector regression. Quantum Inf Process 23, 29 (2024). https://doi.org/10.1007/s11128-023-04231-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04231-7

Keywords

Navigation