Skip to main content
Log in

Measurement-device-independent quantum key agreement based on entanglement swapping

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum key agreement (QKA) is an important cryptographic primitive that plays a pivotal role in private communications. However, in practical implementations of QKA, the flaws in participants’ detectors may be exploited to compromise the security and fairness of the protocol. To address this issue, we propose a two-party measurement-device-independent QKA protocol, effectively eliminating all detector-side-channel loopholes. This protocol is based on quantum entanglement swapping and Bell-state measurements, making it feasible under current technological conditions. A thorough security analysis is conducted, demonstrating its ability to guarantee both security and fairness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)

    MathSciNet  Google Scholar 

  2. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Proceedings on IEEE International Conference on Computing, Systematic Signal Processing, pp. 175–179. IEEE, New York (1984).

  3. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    ADS  MathSciNet  Google Scholar 

  4. Dutta, A., Pathak, A.: New protocols for quantum key distribution with explicit upper and lower bound on secret-key rate. arXiv preprint arXiv:2212.13089 (2022).

  5. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    ADS  Google Scholar 

  6. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    ADS  Google Scholar 

  7. Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94(14), 140501 (2005)

    ADS  Google Scholar 

  8. Dutta, A., Pathak, A.: Controlled secure direct quantum communication inspired scheme for quantum identity authentication. Quantum Inf. Process. 22(1), 13 (2022)

    ADS  MathSciNet  Google Scholar 

  9. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    ADS  MathSciNet  Google Scholar 

  10. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)

    ADS  Google Scholar 

  11. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42(5), 055305 (2009)

    ADS  MathSciNet  Google Scholar 

  12. Yang, Y.G., Cao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Scr. 80(6), 065002 (2009)

    ADS  Google Scholar 

  13. Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single particle measurement. Opt. Commun. 283(7), 1561–1565 (2010)

    ADS  Google Scholar 

  14. Zeng, G.H., Keitel, C.H.: An arbitrated quantum signature algorithm. Phys. Rev. A 65, 042312 (2002)

    ADS  Google Scholar 

  15. Yang, Y.G., Liu, Z.C., Li, J., Chen, X.B., Zuo, H.J., Zhou, Y.H., Shi, W.M.: Theoretically extensible quantum digital signature with starlike cluster states. Quantum Inf. Process. 16(1), 12 (2017)

    ADS  Google Scholar 

  16. Yang, Y.G., Lei, H., Liu, Z.C., Zhou, Y.H., Shi, W.M.: Arbitrated quantum signature scheme based on cluster states. Quantum Inf. Process. 15(6), 2487–2497 (2016)

    ADS  MathSciNet  Google Scholar 

  17. Jakobi, M., Simon, C., Gisin, N., Bancal, J.D., et al.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83, 022301 (2011)

    ADS  Google Scholar 

  18. Yang Y.G., Liu B.X., Xu G.B., Zhou Y.H., and Shi W.M.: Practical quantum anonymous private information retrieval based on quantum key distribution. IEEE Trans. Inf. Forens. Secur. 18, 4034-4045 (2023)

  19. Yang, Y.G., Liu, Z.C., Chen, X.B., Zhou, Y.H., Shi, W.M.: Robust QKD-based private database queries based on alternative sequences of single-qubit measurements. Sci. Chin. Phys. Mech. Astron. 60(12), 120311 (2017)

    ADS  Google Scholar 

  20. Yang, Y.G., Liu, Z.C., Li, J., Chen, X.B., Zuo, H.J., Zhou, Y.H., Shi, W.M.: Quantum private query with perfect user privacy against a joint-measurement attack. Phys. Lett. A 380(48), 4033–4038 (2016)

    ADS  Google Scholar 

  21. Yang, Y.G., Liu, Z.C., Chen, X.B., Cao, W.F., Zhou, Y.H., Shi, W.M.: Novel classical post-processing for quantum key distribution-based quantum private query. Quantum Inf. Process. 15, 3833–3840 (2016)

    ADS  MathSciNet  Google Scholar 

  22. Gao, F., Liu, B., Wen, Q.Y.: Flexible quantum private queries based on quantum key distribution. Opt. Exp. 20, 17411–17420 (2012)

    Google Scholar 

  23. Gao, F., Qin, S.J., Huang, W., Wen, Q.Y.: Quantum private query: a new kind of practical quantum cryptographic protocols. Sci. China-Phys. Mech. Astron. 62, 070301 (2019)

    Google Scholar 

  24. Yang, Y.G., Guo, X.P., Xu, G., Chen, X.B., Li, J., Zhou, Y.H., Shi, W.M.: Reducing the communication complexity of quantum private database queries by subtle classical post-processing with relaxed quantum ability. Comput. Secur. 81, 15–24 (2019)

    Google Scholar 

  25. Zhang, Z., Zeng, G., Zhou, N., Xiong, J.: Quantum identity authentication based on ping-pong technique for photons. Phys. Lett. A 356(3), 199–205 (2006)

    ADS  Google Scholar 

  26. Dutta, A., Pathak, A.: A short review on quantum identity authentication protocols: How would Bob know that he is talking with Alice? Quantum Inf. Process. 21(11), 369 (2022)

    ADS  MathSciNet  Google Scholar 

  27. Chen, G., Wang, Y., Jian, L., Zhou, Y., Liu, S., Luo, J., Yang, K.: Quantum identity authentication protocol based on flexible quantum homomorphic encryption with qubit rotation. J. Appl. Phys. 133(6), 064402 (2023)

    Google Scholar 

  28. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1149 (2004)

    ADS  Google Scholar 

  29. Tsai, C.W., Hwang, T.: On quantum key agreement protocol. Technical Report C-S-I-E, NCKU, Taiwan (2009).

  30. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283, 1192–1195 (2010)

    ADS  Google Scholar 

  31. He, Y.F., Ma, W.P.: Quantum key agreement protocols with four-qubit cluster states. Quantum Inf. Process. 14, 3483–3498 (2015)

    ADS  MathSciNet  Google Scholar 

  32. Yang, Y.-G., Wang, Y.-C., Li, J., Zhou, Y.-H., Shi, W.-M.: Semi-device-independent quantum key agreement protocol. Quantum Inf. Process. 20(11), 376 (2021)

  33. Yang, Y.G., Li, B.R., Li, D., et al.: New quantum key agreement protocols based on Bell states. Quantum Inf. Process. 18, 322 (2019)

  34. Zhu, H.F., Liu, T.H., Wang, C.N.: A one-round quantum mutual authenticated key agreement protocol with semi-honest server using three-particle entangled states. Int. J. Theor. Phys. 60, 929–943 (2021)

    MathSciNet  Google Scholar 

  35. Huang, X., Zhang, S.B., Chang, Y., Qiu, C., Liu, D.M., Hou, M.: Quantum key agreement protocol based on quantum search algorithm. Int. J. Theor. Phys. 60, 838–847 (2021)

    MathSciNet  Google Scholar 

  36. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with Bell states and Bell measurements. Quantum Inf. Process. 12, 921–932 (2013)

    ADS  MathSciNet  Google Scholar 

  37. Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 1797–1805 (2013)

    ADS  MathSciNet  Google Scholar 

  38. Sun, Z., Huang, J., Wang, P.: Efficient multiparty quantum key agreement protocol based on commutative encryption. Quantum Inf. Process. 15(5), 2101–2111 (2016)

    ADS  MathSciNet  Google Scholar 

  39. Yang, Y.-G., Gao, S., Li, D., Zhou, Y.-H., Shi, W.-M.: Two-party quantum key agreement over a collective noisy channel. Quantum Inf. Process. 18(3), 74 (2019)

  40. Wang, P., Sun, Z., Sun, X.: Multi-party quantum key agreement protocol secure against collusion attacks. Quantum Inf. Process. 16, 170 (2017)

    ADS  MathSciNet  Google Scholar 

  41. Yang, Y.G., Li, B.R., Kang, S.Y., et al.: New quantum key agreement protocols based on cluster states. Quantum Inf. Process. 18, 77 (2019)

    ADS  MathSciNet  Google Scholar 

  42. Zhou, N.R., Zhu, K.N., Wang, Y.Q.: Three-party semi-quantum key agreement protocol. Int. J. Theor. Phys. 59, 663–676 (2020)

    MathSciNet  Google Scholar 

  43. Naresh, V.S., Reddi, S.: Multiparty quantum key agreement with strong fairness property. Comput. Syst. Sci. Eng. 35(6), 457–465 (2020)

    Google Scholar 

  44. Naresh, V.S., Nasralla, M.M., Reddi, S., García-Magariño, I.: Quantum Diffie-Hellman extended to dynamic quantum group key agreement for e-Healthcare multi-agent systems in smart cities. Sensors 20(14), 3940 (2020)

    ADS  Google Scholar 

  45. Li, L., Li, Z.: A verifiable multiparty quantum key agreement based on bivariate polynomial. Inf. Sci. 521, 343–349 (2020)

    MathSciNet  Google Scholar 

  46. Lin, S., Zhang, X., Guo, G.D., Wang, L.L., Liu, X.F.: Multiparty quantum key agreement. Phys. Rev. A 104, 042421 (2021)

    ADS  MathSciNet  Google Scholar 

  47. Yang, Y.G., Lv, X.L., Gao, S., et al.: Detector-device-independent quantum key agreement based on single-photon Bell state measurement. Int. J. Theor. Phys. 61(2), 50 (2022)

    MathSciNet  Google Scholar 

  48. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and single particle measurements. Quantum Inf. Process. 13, 649–663 (2014)

    ADS  MathSciNet  Google Scholar 

  49. Yang, Y.-G., Liu, X.-X., Gao, S., Zhou, Y.-H., Shi, W.-M., Li, J., Li, D.: Towards practical anonymous quantum communication: A measurement-device-independent approach. Phys. Rev. A 104(5), 052415 (2021)

  50. Lydersen, L., Wiechers, C., Wittmann, C., et al.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nature Photon. 4(10), 686–689 (2010)

    ADS  Google Scholar 

  51. Xu, F., Qi, B., Lo, H.K.: Experimental demonstration of phase-remapping attack in a practical quantum key distribution system. New J. Phys. 12(11), 113026 (2010)

    ADS  Google Scholar 

  52. Gerhardt, I., Liu, Q., Lamas-Linares, A., et al.: Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nature Commun. 2(1), 349 (2011)

    ADS  Google Scholar 

  53. Acín, A., Brunner, N., Gisin, N., et al.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98(23), 230501 (2007)

    ADS  Google Scholar 

  54. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    ADS  Google Scholar 

  55. Cao, Y., Li, Y.H., Yang, K.X., et al.: Long-distance free-space measurement-device-independent quantum key distribution. Phys. Rev. Lett. 125(26), 260503 (2020)

    ADS  Google Scholar 

  56. Zhou, Y.H., Yu, Z.W., Wang, X.B.: Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A 93(4), 042324 (2016)

    ADS  Google Scholar 

  57. Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557, 400 (2018)

    ADS  Google Scholar 

  58. Ma, X., Zeng, P., Zhou, H.: Phase-matching quantum key distribution. Phys. Rev. X 8, 031043 (2018)

    Google Scholar 

  59. Lin, J., Lütkenhaus, N.: Simple security analysis of phase-matching measurement-device-independent quantum key distribution. Phys. Rev. A 98, 042332 (2018)

    ADS  Google Scholar 

  60. Wang, X.B., Yu, Z.W., Hu, X.L.: Twin-field quantum key distribution with large misalignment error. Phys. Rev. A 98, 062323 (2018)

    ADS  Google Scholar 

  61. Wang, S., Yin, Z.Q., He, D.Y., et al.: Twin-field quantum key distribution over 830-km fibre. Nat. Photon. 16, 154–161 (2022)

    ADS  Google Scholar 

  62. Zeng, P., Zhou, H.Y., Wu, W.J., Ma, X.F.: Mode-pairing quantum key distribution. Nat. Commun. 13, 3903 (2022)

    ADS  Google Scholar 

  63. Fan-Yuan, G.J., Lu, F.Y., Wang, S., et al.: Measurement-device-independent quantum key distribution for nonstandalone networks. Photon. Res. 9(10), 1881–1891 (2021)

    Google Scholar 

  64. Fan-Yuan, G.J., Lu, F.Y., Wang, S., et al.: Robust and adaptable quantum key distribution network without trusted nodes. Optica 9, 812–823 (2022)

    ADS  Google Scholar 

  65. Cai, X.Q., Liu, Z.F., Wei, C.Y., Wang, T.Y.: Long distance measurement-device-independent three-party quantum key agreement. Phys. A: Stat. Mech. Its Appl. 607, 128226 (2022)

    MathSciNet  Google Scholar 

  66. Cabellon, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)

    ADS  Google Scholar 

  67. Liu, B.X., Huang, R.C., Yang, Y.G., Xu, G.B.: Measurement-device-independent multi-party quantum key agreement. Front. Quantum Sci. Technol. (2023). https://doi.org/10.3389/frqst.2023.1182637

    Article  Google Scholar 

  68. Zhou, Z., Sheng, Y., Niu, P., et al.: Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 63, 230362 (2020)

    ADS  Google Scholar 

  69. Lütkenhaus, N., Calsamiglia, J., Suominen, K.-A.: Bell measurements for teleportation. Phys. Rev. A 59, 3295 (1999)

    ADS  MathSciNet  Google Scholar 

  70. Welte, S., Thomas, P., Hartung, L., et al.: A nondestructive Bell-state measurement on two distant atomic qubits. Nat. Photon. 15, 504–509 (2021)

    ADS  Google Scholar 

  71. Barrett, S.D., Kok, P., Nemoto, K., et al.: Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities. Phys. Rev. A 71, 060302 (2005)

    ADS  Google Scholar 

  72. Ren, X.F., Guo, G.P., Guo, G.C.: Complete Bell-states analysis using hyper-entanglement. Phys. Lett. A 343(1–3), 8–11 (2005)

    ADS  MathSciNet  Google Scholar 

  73. Li, T., Miranowicz, A., Hu, X., et al.: Quantum memory and gates using a -type quantum emitter coupled to a chiral waveguide. Phys. Rev. A 97(6), 062318 (2018)

    ADS  Google Scholar 

  74. Ul Haq, S., Khalique, A.: Long distance cavity entanglement by entanglement swapping using atomic momenta. Opt. Commun. 334, 290–293 (2015)

    ADS  Google Scholar 

  75. Yang, Y.-G., Sun, S.-J., Xu, P., Tian, J.: Flexible protocol for quantum private query based on B92 protocol. Quantum Inf. Process. 13, 805–813 (2014)

  76. Yang, Y.-G., Sun, S.-J., Tian, J., Xu, P.: Secure quantum private query with real-time security check.Optik. 125, 5538–5541 (2014)

  77. Yang, Y.-G., Zhang, M.-O., Yang, R.: Private database queries using one quantum state. Quantum Inf. Process. 14, 1017–1024 (2015)

  78. Yang, Y.-G., Gao, S., Li, D., Zhou, Y.-H., Shi, W.-M.: New secure quantum dialogue protocols over collective noisy channels. Int. J. Theor. Phys. 58(9), 2810–2822 (2019)

  79. Yang, Y.-G., Gao, S., Li, D., Zhou, Y.-H., Shi, W.-M.: Three-party quantum secret sharing against collective noise. Quantum Inf. Process. 18(5), 215 (2019)

  80. Cao, W.-F., Yang, Y.-G.: Verifiable quantum secret sharing protocols based on four-qubit entangled states. Int. J. Theor. Phys. 58(4), 1202–1214 (2019)

  81. Yang, Y.-G., Yang, J.-J., Zhou, Y.-H., et al.: Quantum network communication: A discrete-time quantum-walk approach. Sci. Chin. Inf. Sci. 61, 042501 (2018)

  82. Yang, Y.-G., Yang, R., Cao, W.-F., Chen, X.-B., Zhou, Y.-H., Shi, W.-M.: Flexible quantum oblivious transfer. Int. J. Theor. Phys. 56(4), 1286–1297 (2017)

  83. Li, J., Yang, Y.-G., Chen, X.-B., Zhou, Y.-H., Shi, W.-M.: Practical quantum private database queries based on passive round-Robin differential phase-shift quantum key distribution. Sci. Rep. 6, 31738 (2016)

  84. Yang, Y.-G., Sun, S.-J., Pan, Q.-X., Xu, P.: Quantum oblivious transfer based on unambiguous set discrimination.Optik. 126(23), 3838–3843 (2015)

  85. Yang, Y.-G., Wang, Y.-C., Yang, Y.-L., Chen, X.-B., Li, D., Zhou, Y.-H., Shi, W.-M.: Participant attack on the deterministic measurement-device-independent quantum secret sharing protocol. Sci. Chin. Phys. Mech. Astron. 64(6), 121–124 (2021)

  86. Yang, Y.-G., Liu, X.-X., Gao, S., Chen, X.-B., Li, D., Zhou, Y.-H., Shi, W.-M.: A stronger participant attack on the measurement-device-independent protocol for deterministic quantum secret sharing.Quantum Inf. Process. 20(7), 223 (2021)

  87. Yang, Y.-G., Cao, G.-D., Huang, R.-C., Gao, S., Zhou, Y.-H., Shi, W.-M., Xu, G.B.: Multiparty anonymous quantum communication without multipartite entanglement. Quantum Inf. Process. 21(6), 196 (2022)

  88. Yang, Y.-G., Yang, Y.-L., Lv, X.-L., et al.: Examining the correctness of anonymity for practical quantum networks (vol 101, 062311, 2020). Phys. Rev. A. 106(4), 049901 (2022)

  89. Yang, Y.-L., Yang, Y.-G., Zhou, Y.-H., Shi, W.-M., Li, J.: Efficient quantum multi-hop communication based on Greenberger-Horne-Zeilinger states and Bell states. Quantum Inf. Process. 20(5), 189 (2021)

  90. Yang, Y.-L., Yang, Y.-G., Zhou, Y.-H., et al.: Measurement-device-independent quantum wireless network communication. Quantum Inf. Process. 21(4), 154 (2022)

  91. Yang, Y.-G., Yang P.-Z., Xu G.-B., et al.: Quantum private information retrieval over a collective noisy channel. Mod. Phys. Lett. A 38(1), 2350001(2023)

  92. Yang, Y.-G., Huang R.-C., Xu G.-B., et al.: New multiparty measurement-device-independent quantum secret sharing protocol based on entanglement swapping. Mod. Phys. Lett. A https://doi.org/10.1142/S0217732323501456 (2023)

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 62071015, 62171264); Shandong Provincial Natural Science Foundation (ZR2023MF080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guang Yang.

Ethics declarations

Conflict of interests

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YG., Huang, RC., Xu, GB. et al. Measurement-device-independent quantum key agreement based on entanglement swapping. Quantum Inf Process 22, 438 (2023). https://doi.org/10.1007/s11128-023-04189-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04189-6

Keywords

Navigation