Skip to main content
Log in

The barren plateaus of quantum neural networks: review, taxonomy and trends

  • Review Paper
  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In the noisy intermediate-scale quantum (NISQ) era, the computing power displayed by quantum computing hardware may be more advantageous than classical computers, but the emergence of the barren plateau (BP) has hindered quantum computing power and cannot solve large-scale problems. This summary analyzes the phenomenon of the BP in the quantum neural network that is rapidly developing in the NISQ era. This article will review the research status of the BP problem in the quantum neural network (QNN) in the past five years from the analysis of the source of the BP, the current stage solution, and the future research direction. First of all, the source of the BP was briefly explained and then classified the BP solution from different perspectives, including quantum embedding in QNN, ansatz parameter selection and structural design, and optimization algorithms. Finally, the BP problem in the QNN is summarized, and the research direction for solving problems in the future is made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

All data, models, and code generated and used during the current study are available from the corresponding author on reasonable request.

References

  1. Preskill, J.: Simulating quantum field theory with a quantum computer (2018)

  2. Endo, S., Kurata, I., Nakagawa, Y.O.: Calculation of the Green’s function on near-term quantum computers (2019)

  3. Cao, Y., Romero, J., Olson, J.P., Degroote, M., Aspuru-Guzik, A.: Quantum chemistry in the age of quantum computing (2018)

  4. Outeiral, C., Strahm, M., Shi, J., Morris, G.M., Benjamin, S.C., Deane, C.M.: The prospects of quantum computing in computational molecular biology. Wiley Interdiscip. Rev. Comput. Mol. Sci. 11 (2021)

  5. Thanasilp, S., Wang, S., Nghiem, N.A., Coles, P.J., Cerezo, M.: Subtleties in the trainability of quantum machine learning models (2021)

  6. Preskill, J.: Quantum computing in the nisq era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  7. Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S.C., Endo, S., Fujii, K., McClean, J.R., Mitarai, K., Yuan, X., Cincio, L., et al.: Variational quantum algorithms. Nat. Rev. Phys. 3(9), 625–644 (2021)

    Article  Google Scholar 

  8. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm. arXiv:1411.4028 (2014)

  9. Lilienfeld, A.V.: Quantum machine learning. In APS March Meeting (2017)

  10. Aspuru-Guzik, A., Peruzzo, A., Mcclean, J., O’Brien, J.L., Yung, M.H., Love, P.J., Shadbolt, P., Zhou, X.Q.: A variational eigenvalue solver on a quantum processor. Nat. Commun. 5(1), 4213 (2013)

    Google Scholar 

  11. Higgott, O., Wang, D., Brierley, S.: Variational quantum computation of excited states. Quantum 3, 156 (2019)

    Article  Google Scholar 

  12. Aspuru-Guzik, A., Dutoi, A.D., Love, P.J., Head-Gordon, M.: Simulated quantum computation of molecular energies. Science 309(5741), 1704–1707 (2006)

    Article  ADS  Google Scholar 

  13. Mcardle, S., Jones, T., Endo, S., Li, Y., Yuan, X.: Variational ansatz-based quantum simulation of imaginary time evolution. npj Quantum Inf. 5(1), (2019)

  14. Yuan, X., Endo, S., Zhao, Q., Li, Y., Benjamin, S.C.: Theory of variational quantum simulation. Quantum 3, 191 (2019)

    Article  Google Scholar 

  15. Endo, S., Sun, J., Li, Y., Benjamin, S., Yuan, X.: Variational quantum simulation of general processes. Phys. Rev. Lett. 125(1), 010501 (2018)

    Article  MathSciNet  Google Scholar 

  16. Bravo-Prieto, C., Larose, R., Cerezo, M., Subasi, Y., Cincio, L., Coles, P.: Variational quantum linear solver: a hybrid algorithm for linear systems. Am. Phys. Soc. (2020)

  17. Huang, H.Y., Bharti, K., Rebentrost, P.: Near-term quantum algorithms for linear systems of equations (2019)

  18. Lubasch, M., Joo, J.W., Moinier, P., Kiffner, M., Jaksch, D.: Variational quantum algorithms for nonlinear problems. Am. Phys. Soc. 101(1), 010301 (2020)

    Google Scholar 

  19. Schuld, M., Bocharov, A., Svore, K., Wiebe, N.: Circuit-centric quantum classifiers. Phys. Rev. A 101(3), 032308 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  20. Romero, J., Olson, J.P., Aspuru-Guzik, A.: Quantum autoencoders for efficient compression of quantum data. Quantum Sci. Technol. 2(4), 045001 (2016)

    Article  ADS  Google Scholar 

  21. Benedetti, M., Garcia-Pintos, D., Perdomo, O., Leyton-Ortega, V., Nam, Y., Perdomo-Ortiz, A.: A generative modeling approach for benchmarking and training shallow quantum circuits. Springer Science and Business Media LLC (1) (2019)

  22. Abbas, A., Sutter, D., Zoufal, C., Lucchi, A., Woerner, S.: The power of quantum neural networks. Nat. Comput. Sci. 1(6), 403–409 (2021)

    Article  Google Scholar 

  23. McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nat. Commun. 9(1), 4812 (2018)

    Article  ADS  Google Scholar 

  24. Harrow, A.W., Montanaro, A.: Quantum computational supremacy. Nature 549(7671), 203–209 (2017)

    Article  ADS  Google Scholar 

  25. Lund, A., Bremner, T.R.M.: Quantum sampling problems, bosonsampling, and quantum supremacy. npj Quantum Inf. 3(1), 15 (2017)

    Article  ADS  Google Scholar 

  26. Liu, J.G., Wang, L.: Differentiable learning of quantum circuit born machine. Phys. Rev. A 98(6), 062324 (2018)

    Article  ADS  Google Scholar 

  27. Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv:1802.06002 (2018)

  28. Huggins, W.J., Patil, P., Mitchell, B., Whaley, K.B., Stoudenmire, M.: Towards quantum machine learning with tensor networks. Quantum Sci. Technol. 4(2), 024001 (2018)

    Article  ADS  Google Scholar 

  29. Grant, E., Benedetti, M., Cao, S., Hallam, A., Lockhart, J., Stojevic, V., Green, A.G., Severini, S.: Hierarchical quantum classifiers. npj Quantum Inf. 4(1), 65 (2018)

    Article  ADS  Google Scholar 

  30. Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning (2021)

  31. Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus (2021)

  32. Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nat. Commun. 12(1), 1791 (2020)

    Article  ADS  Google Scholar 

  33. Marrero, C.O., Kieferova, M., Wiebe, N.: Entanglement-induced barren plateaus. PRX Quantum 2(4), 040316 (2021)

    Article  Google Scholar 

  34. Patti, T.L., Najafi, K., Gao, X., Yelin, S.F.: Entanglement devised barren plateau mitigation. Phys. Rev. Res. 3(3), 033090 (2021)

    Article  Google Scholar 

  35. Wang, S., Fontana, E., Cerezo, M., Sharma, K., Sone, A., Cincio, L., Coles, P.J.: Noise-induced barren plateaus in variational quantum algorithms. Nat. Commun. 12(1), 6961 (2021)

    Article  ADS  Google Scholar 

  36. Wu, A., Li, G., Ding, Y., Xie, Y.: Mitigating noise-induced gradient vanishing in variational quantum algorithm training. arXiv:2111.13209 (2021)

  37. Tangpanitanon, J., Thanasilp, S., Dangniam, N., Lemonde, M.A., Angelakis, D.G.: Expressibility and trainability of parameterized analog quantum systems for machine learning applications. Phys. Rev. Res. 2(4), 043364 (2020)

    Article  Google Scholar 

  38. Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2021)

    Article  Google Scholar 

  39. Arrasmith, A., Holmes, Z., Cerezo, M., Coles, P.J.: Equivalence of quantum barren plateaus to cost concentration and narrow gorges. Quantum Sci. Technol. 7(4), 045015 (2021)

    Article  ADS  Google Scholar 

  40. Dankert, C., Cleve, R., Emerson, J., Livine, E.: Exact and approximate unitary 2-designs and their application to fidelity estimation. Phys. Rev. A 80(1), 012304 (2009)

    Article  ADS  Google Scholar 

  41. Harrow, A.W., Low, R.A.: Random quantum circuits are approximate 2-designs. Commun. Math. Phys. 291(1), 257–302 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  42. Zhao, C., Gao, X.S.: Analyzing the barren plateau phenomenon in training quantum neural network with the zx-calculus. Quantum 5, 466 (2021)

    Article  Google Scholar 

  43. John, V.D.W.: ZX-calculus for the working quantum computer scientist (2020)

  44. Schuld, M., Killoran, N.: Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 122(4), 040504 (2019)

    Article  ADS  Google Scholar 

  45. Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Am. Phys. Soc. 103(3), 032430 (2021)

    MathSciNet  Google Scholar 

  46. Shin, S., Teo, Y.S., Jeong, H.: Exponential data encoding for quantum supervised learning. Phys. Rev. A 107, 012422 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  47. Biamonte, J.: Universal variational quantum computation. Phys. Rev. A 103, L030401 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  48. Cao, Y., Romero, J., Olson, J.P., Degroote, M., Aspuru-Guzik, A.: Quantum chemistry in the age of quantum computing (2018)

  49. Endo, S., Cai, Z., Benjamin, S.C., Yuan, X.: Hybrid quantum-classical algorithms and quantum error mitigation. Journal of the Physical Society of Japan (3) (2021)

  50. R.Selvarajan, M.Sajjan, T.Humble, S.Kais: Dimensionality reduction with variational encoders based on subsystem purification (2021)

  51. Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. arXiv e-prints (2019)

  52. Zhang, K., Hsieh, M.-H., Liu, L., Tao, D.: Gaussian initializations help deep variational quantum circuits escape from the barren plateau (2022)

  53. A.Skolik, J.McClean, M.Mohseni, P.Smagt, M.Leib: Layerwise learning for quantum neural networks (2021)

  54. Sauvage, F., Sim, S., Kunitsa, A.A., Simon, W.A., Mauri, M., Perdomo-Ortiz, A.: Flip: A flexible initializer for arbitrarily-sized parametrized quantum circuits (2021)

  55. Liu, H.Y., Chen, Z.Y., Sun, T.P., Wu, Y.C., Han, Y.J., Guo, G.P.: Mitigating barren plateaus with transfer-learning-inspired parameter initializations (2021)

  56. Hettinger, C., Christensen, T., Ehlert, B., Humpherys, J., Jarvis, T., Wade, S.: Forward thinking: building and training neural networks one layer at a time (2017)

  57. Tuysuz, C., Clemente, G., Crippa, A., Hartung, T., Kuhn, S., Jansen, K.: Classical splitting of parametrized quantum circuits (2022)

  58. Yuxuan, D., Tao, H., Shan, Y., M.Hsieh, Dacheng, T.: Quantum circuit architecture search for variational quantum algorithms (2022)

  59. Ostaszewski, M., Grant, E., Benedetti, M.: Structure optimization for parameterized quantum circuits. Quantum 5, 391 (2021)

    Article  Google Scholar 

  60. Wiersema, R., Zhou, C., De Sereville, Y., Carrasquilla, J.F., Kim, Y.B., Yuen, H.: Exploring entanglement and optimization within the hamiltonian variational ansatz (2020)

  61. Park, C.-Y., Killoran, N.: Hamiltonian variational ansatz without barren plateaus. arXiv preprint arXiv:2302.08529 (2023)

  62. Troyer, M., Wecker, D., Hastings, M.B.: Progress towards practical quantum variational algorithms. Phys. Rev. At. Mol. Opt. Phys. 92(4), 042303 (2015)

    Article  ADS  Google Scholar 

  63. Mele, A.A., Mbeng, G.B., Santoro, G.E., Collura, M., Torta, P.: Avoiding barren plateaus via transferability of smooth solutions in a Hamiltonian variational ansatz. Phys. Rev. A 106(6), L060401 (2022)

    Article  ADS  Google Scholar 

  64. Zhou, L., Wang, S.T., Choi, S., Pichler, H., Lukin, M.D.: Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices. Phys. Rev. X 10(2), 021067 (2020)

    Google Scholar 

  65. Li, G., Song, Z., Wang, X.: Vsql:variational shadow quantum learning for classification (2020)

  66. Sack, S.H., Medina, R.A., Michailidis, A.A., Kueng, R., Serbyn, M.: Avoiding barren plateaus using classical shadows. PRX Quantum 3(2), 020365 (2022)

    Article  ADS  Google Scholar 

  67. Pesah, A., Cerezo, M., Wang, S., Volkoff, T., Sornborger, A.T., Coles, P.J.: Absence of barren plateaus in quantum convolutional neural networks. Phys. Rev. X 11(4), 041011 (2020)

    Google Scholar 

  68. Bharti, K., Haug, T.: Quantum-assisted simulator. Phys. Rev. A 104(4), 042418 (2021)

    Article  ADS  Google Scholar 

  69. Zhang, Z., Chen, Z., Huang, H., Jia, Z.: Quark: a gradient-free quantum learning framework for classification tasks (2022)

  70. Arrasmith, A., Cerezo, M., Czarnik, P., Cincio, L., Coles, P.J.: Effect of barren plateaus on gradient-free optimization. Quantum (2020)

  71. Suzuki, Y., Yano, H., Raymond, H., Yamamoto, N.: Normalized gradient descent for variational quantum algorithms (2021)

  72. Kieferova, M., Carlos, O.M., Wiebe, N.: Quantum generative training using r’enyi divergences (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Qi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, H., Wang, L., Zhu, H. et al. The barren plateaus of quantum neural networks: review, taxonomy and trends. Quantum Inf Process 22, 435 (2023). https://doi.org/10.1007/s11128-023-04188-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04188-7

Keywords

Navigation