Skip to main content
Log in

Renormalization of negativity and quantum phase transition in the spin-1/2 XY chain

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We apply the quantum renormalization group (QRG) method to study the relationship between entanglement and quantum phase transition in the spin-\(\text {1/2}\) \(\textit{XY}\) chain. The tripartite negativity and bipartite negativity are considered as the measurements of entanglement for the block state and its reduced state, and the first derivatives and scaling behaviors of tripartite and bipartite negativity are investigated, respectively. The results show that the unstable fixed point (critical point) and the stable fixed point can be revealed by the evolutions of tripartite and bipartite negativity and are verified by the first derivatives of tripartite and bipartite negativity in the thermodynamic limit. Moreover, the singular behaviors are shown in the first derivatives of tripartite and bipartite negativity, indicating that the second-order phase transition occurs. The renormalized tripartite negativity and bipartite negativity obey the same scaling laws in the vicinity of the quantum phase transition point. Our findings indicate that the QRG implementation of negativity can be also regarded as another description of critical behavior of the \(\textit{XY}\) model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Nielson, M.A.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  2. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993). https://doi.org/10.1103/PhysRevLett.70.1895

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997). https://doi.org/10.1038/37539

    Article  ADS  MATH  Google Scholar 

  4. Pezzè, L., Gabbrielli, M., Lepori, L., Smerzi, A.: Multipartite entanglement in topological quantum phases. Phys. Rev. Lett. 119, 250401 (2017). https://doi.org/10.1103/PhysRevLett.119.250401

    Article  ADS  Google Scholar 

  5. Cho, J., Kim, K.W.: Quantum phase transition and entanglement in topological quantum wires. Sci. Rep. 7, 2745 (2017). https://doi.org/10.1038/s41598-017-02717-w

    Article  ADS  Google Scholar 

  6. Hauke, P., Heyl, M., Tagliacozzo, L., Zoller, P.: Measuring multipartite entanglement through dynamic susceptibilities. Nat. Phys. 12, 778–782 (2016). https://doi.org/10.1038/nphys3700

    Article  Google Scholar 

  7. De Nicola, S., Michailidis, A.A., Serbyn, M.: Entanglement view of dynamical quantum phase transitions. Phys. Rev. Lett. 126, 040602 (2021). https://doi.org/10.1103/PhysRevLett.126.040602

    Article  MathSciNet  Google Scholar 

  8. Liu, Z., Bhatt, R.N.: Quantum entanglement as a diagnostic of phase transitions in disordered fractional quantum hall liquids. Phys. Rev. Lett. 117, 206801 (2016). https://doi.org/10.1103/PhysRevLett.117.206801

    Article  ADS  Google Scholar 

  9. Orús, R., Wei, T.-C., Buerschaper, O., García-Saez, A.: Topological transitions from multipartite entanglement with tensor networks: a procedure for sharper and faster characterization. Phys. Rev. Lett. 113, 257202 (2014). https://doi.org/10.1103/PhysRevLett.113.257202

    Article  ADS  Google Scholar 

  10. Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  11. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998). https://doi.org/10.1103/PhysRevA.57.120

    Article  ADS  Google Scholar 

  12. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001). https://doi.org/10.1103/PhysRevLett.86.5188

    Article  ADS  MATH  Google Scholar 

  13. Sun, Z.-Y., Liu, S., Huang, H.-L., Zhang, D., Wu, Y.-Y., Xu, J., Zhan, B.-F., Cheng, H.-G., Duan, C.-B., Wang, B.: Multipartite quantum nonlocality and Bell-type inequalities in an infinite-order quantum phase transition of the one-dimensional spin-1/2 XXZ chain. Phys. Rev. A 90, 062129 (2014). https://doi.org/10.1103/PhysRevA.90.062129

    Article  ADS  Google Scholar 

  14. Radhakrishnan, C., Ermakov, I., Byrnes, T.: Quantum coherence of planar spin models with Dzyaloshinsky–Moriya interaction. Phys. Rev. A 96, 012341 (2017). https://doi.org/10.1103/PhysRevA.96.012341

    Article  ADS  Google Scholar 

  15. Qin, M., Ren, Z., Zhang, X.: Dynamics of quantum coherence and quantum phase transitions in XY spin systems. Phys. Rev. A 98, 012303 (2018). https://doi.org/10.1103/PhysRevA.98.012303

    Article  ADS  Google Scholar 

  16. Yin, S., Liu, S., Song, J., Luan, H.: Markovian and non-Markovian dynamics of quantum coherence in the extended XX chain. Phys. Rev. A 106, 032220 (2022). https://doi.org/10.1103/PhysRevA.106.032220

    Article  ADS  Google Scholar 

  17. Lee, D., Sohbi, A., Son, W.: Detection of a quantum phase transition in a spin-1 chain through multipartite high-order correlations. Phys. Rev. A 106, 042432 (2022). https://doi.org/10.1103/PhysRevA.106.042432

    Article  ADS  Google Scholar 

  18. Shao, L., Zhang, R., Lu, W., Zhang, Z., Wang, X.: Quantum phase transition in the XXZ central spin model. Phys. Rev. A 107, 013714 (2023). https://doi.org/10.1103/PhysRevA.107.013714

    Article  ADS  MathSciNet  Google Scholar 

  19. Stre čka, J., Verkholyak, T., Richter, J., Karl’ová, K., Derzhko, O., Schnack, J.: Frustrated magnetism of spin-\(\frac{1}{2}\) Heisenberg diamond and octahedral chains as a statistical mechanical monomer-dimer problem. Phys. Rev. B 105, 064420 (2022). https://doi.org/10.1103/PhysRevB.105.064420

  20. de Buruaga, N.S.S., Santalla, S.N., Rodríguez-Laguna, J., Sierra, G.: Entanglement in noncritical inhomogeneous quantum chains. Phys. Rev. B 104, 195147 (2021). https://doi.org/10.1103/PhysRevB.104.195147

    Article  ADS  Google Scholar 

  21. Tang, H.-K., Marashli, M.A., Yu, W.C.: Unveiling quantum phase transitions by fidelity mapping. Phys. Rev. B 104, 075142 (2021). https://doi.org/10.1103/PhysRevB.104.075142

    Article  ADS  Google Scholar 

  22. Čen čariková, H., Stre čka, J.: Unconventional strengthening of the bipartite entanglement of a mixed spin-(1/2,1) Heisenberg dimer achieved through Zeeman splitting. Phys. Rev. B 102, 184419 (2020). https://doi.org/10.1103/PhysRevB.102.184419

  23. Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature 416, 608–610 (2002). https://doi.org/10.1038/416608a

    Article  ADS  Google Scholar 

  24. Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66(3), 032110 (2002). https://doi.org/10.1103/PhysRevA.66.032110

    Article  ADS  MathSciNet  Google Scholar 

  25. Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003). https://doi.org/10.1103/PhysRevLett.90.227902

    Article  ADS  Google Scholar 

  26. Shi, Q.-Q., Wang, H.-L., Li, S.-H., Cho, S.Y., Batchelor, M.T., Zhou, H.-Q.: Geometric entanglement and quantum phase transitions in two-dimensional quantum lattice models. Phys. Rev. A 93, 062341 (2016). https://doi.org/10.1103/PhysRevA.93.062341

    Article  ADS  Google Scholar 

  27. Xu, Y.-L., Kong, X.-M., Liu, Z.-Q., Yin, C.-C.: Scaling of entanglement during the quantum phase transition for Ising spin systems on triangular and Sierpiński fractal lattices. Phys. Rev. A 95, 042327 (2017). https://doi.org/10.1103/PhysRevA.95.042327

    Article  ADS  Google Scholar 

  28. Mahdavifar, S., Mahdavifar, S., Jafari, R.: Magnetic quantum correlations in the one-dimensional transverse-field XXZ model. Phys. Rev. A 96, 052303 (2017). https://doi.org/10.1103/PhysRevA.96.052303

    Article  ADS  Google Scholar 

  29. Radgohar, R., Montakhab, A.: Global entanglement and quantum phase transitions in the transverse XY Heisenberg chain. Phys. Rev. B 97, 024434 (2018). https://doi.org/10.1103/PhysRevB.97.024434

    Article  ADS  Google Scholar 

  30. Su, L.-L., Ren, J., Wang, Z.D., Bai, Y.-K.: Long-range multipartite quantum correlations and factorization in a one-dimensional spin-1/2 XY chain. Phys. Rev. A 106, 042427 (2022). https://doi.org/10.1103/PhysRevA.106.042427

    Article  ADS  Google Scholar 

  31. Samimi, E., Zarei, M.H., Montakhab, A.: Global entanglement in a topological quantum phase transition. Phys. Rev. A 105, 032438 (2022). https://doi.org/10.1103/PhysRevA.105.032438

    Article  ADS  MathSciNet  Google Scholar 

  32. White, S.R.: Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–2866 (1992). https://doi.org/10.1103/PhysRevLett.69.2863

    Article  ADS  Google Scholar 

  33. Foulkes, W.M.C., Mitas, L., Needs, R.J., Rajagopal, G.: Quantum Monte Carlo simulations of solids. Rev. Mod. Phys. 73, 33–83 (2001). https://doi.org/10.1103/RevModPhys.73.33

    Article  ADS  Google Scholar 

  34. Wilson, K.G.: The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773–840 (1975). https://doi.org/10.1103/RevModPhys.47.773

    Article  ADS  MathSciNet  Google Scholar 

  35. Kargarian, M., Jafari, R., Langari, A.: Renormalization of concurrence: the application of the quantum renormalization group to quantum-information systems. Phys. Rev. A 76, 060304 (2007). https://doi.org/10.1103/PhysRevA.76.060304

    Article  ADS  Google Scholar 

  36. Jafari, R., Kargarian, M., Langari, A., Siahatgar, M.: Phase diagram and entanglement of the Ising model with Dzyaloshinskii–Moriya interaction. Phys. Rev. B 78, 214414 (2008). https://doi.org/10.1103/PhysRevB.78.214414

    Article  ADS  Google Scholar 

  37. Kargarian, M., Jafari, R., Langari, A.: Renormalization of entanglement in the anisotropic Heisenberg (XXZ) model. Phys. Rev. A 77, 032346 (2008). https://doi.org/10.1103/PhysRevA.77.032346

    Article  ADS  Google Scholar 

  38. Hao, X.: Quantum renormalization of entanglement in an antisymmetric anisotropic and bond-alternating spin system. Phys. Rev. A 81, 044301 (2010). https://doi.org/10.1103/PhysRevA.81.044301

    Article  ADS  Google Scholar 

  39. Ma, F.-W., Liu, S.-X., Kong, X.-M.: Entanglement and quantum phase transition in the one-dimensional anisotropic \(\mathit{XY}\) model. Phys. Rev. A 83, 062309 (2011). https://doi.org/10.1103/PhysRevA.83.062309

    Article  ADS  Google Scholar 

  40. Yao, Y., Li, H.-W., Zhang, C.-M., Yin, Z.-Q., Chen, W., Guo, G.-C., Han, Z.-F.: Performance of various correlation measures in quantum phase transitions using the quantum renormalization-group method. Phys. Rev. A 86, 042102 (2012). https://doi.org/10.1103/PhysRevA.86.042102

    Article  ADS  Google Scholar 

  41. Usman, M., Ilyas, A., Khan, K.: Quantum renormalization group of the \(\mathit{XY}\) model in two dimensions. Phys. Rev. A 92, 032327 (2015). https://doi.org/10.1103/PhysRevA.92.032327

    Article  ADS  Google Scholar 

  42. Khan, S., Khan, K.: Renormalized entanglement in Heisenberg–Ising spin-1/2 chain with Dzyaloshinskii–Moriya interaction. Eur. Phys. J. Plus 131, 208 (2016). https://doi.org/10.1140/epjp/i2016-16208-2

    Article  Google Scholar 

  43. Qin, M.: Renormalization of quantum coherence and quantum phase transition in the Ising model. Phys. A 561, 125176 (2021). https://doi.org/10.1016/j.physa.2020.125176

    Article  MathSciNet  MATH  Google Scholar 

  44. Iftikhar, M.T., Usman, M., Khan, K.: Renormalization of multipartite entanglement near the critical point of two-dimensional XXZ model with Dzyaloshinskii–Moriya interaction. Phys. A 596, 127132 (2022). https://doi.org/10.1016/j.physa.2022.127132

    Article  MathSciNet  MATH  Google Scholar 

  45. Lieb, E., Schultz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. 16(3), 407–466 (1961). https://doi.org/10.1016/0003-4916(61)90115-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Ma, F.-W., Liu, S.-X., Kong, X.-M.: Quantum entanglement and quantum phase transition in the XY model with staggered Dzyaloshinskii–Moriya interaction. Phys. Rev. A 84, 042302 (2011). https://doi.org/10.1103/PhysRevA.84.042302

    Article  ADS  Google Scholar 

  47. Xu, S., Song, X.K., Ye, L.: Negativity and geometric quantum discord as indicators of quantum phase transition in the XY model with Dzyaloshinskii–Moriya interaction. Int. J. Mod. Phys. B 27, 1350074 (2013). https://doi.org/10.1142/S0217979213500744

    Article  ADS  MathSciNet  Google Scholar 

  48. Liu, C., Xu, S., J., H., Ye, L.: Probing \(\pi \)-tangle and quantum phase transition in the one-dimensional anisotropic XY model with Dzyaloshinskii–Moriya interaction. Ann. Phys. 356, 417–425 (2015). https://doi.org/10.1016/j.aop.2015.03.017

  49. Liu, C.-C., Xu, S., J., H., Ye, L.: Unveiling \(\pi \)-tangle and quantum phase transition in the one-dimensional anisotropic XY model. Quantum Inf. Process. 14, 2013–2024 (2015). https://doi.org/10.1007/s11128-015-0982-4

  50. Qin, M., Z., R., X., Z.: Monogamy quantum correlation near the quantum phase transitions in the two-dimensional XY spin systems. Chin. Phys. B 27(6), 060301 (2018). https://doi.org/10.1088/1674-1056/27/6/060301

  51. Usman, M., Khan, K.: Entanglement and multipartite quantum correlations in two-dimensional XY model with Dzyaloshinskii–Moriya interaction. Eur. Phys. J. D 74, 181 (2020). https://doi.org/10.1140/epjd/e2020-10025-8

    Article  ADS  Google Scholar 

  52. Wang, Z., Zhang, P.-P.K., Xu, Y.-L., Wang, C.-Y., Zhang, R.-T., Zhang, H., Kong, X.-M.: Quantum quench dynamics in XY spin chain with ferromagnetic and antiferromagnetic interactions. Phys. A 581, 126205 (2021). https://doi.org/10.1016/j.physa.2021.126205

    Article  MathSciNet  MATH  Google Scholar 

  53. De Chiara, G., Sanpera, A.: Genuine quantum correlations in quantum many-body systems: a review of recent progress. Rep. Prog. Phys. 81(7), 074002 (2018). https://doi.org/10.1088/1361-6633/aabf61

    Article  ADS  MathSciNet  Google Scholar 

  54. Wei, T.-C., Das, D., Mukhopadyay, S., Vishveshwara, S., Goldbart, P.M.: Global entanglement and quantum criticality in spin chains. Phys. Rev. A 71, 060305 (2005). https://doi.org/10.1103/PhysRevA.71.060305

    Article  ADS  Google Scholar 

  55. de Oliveira, T.R., Rigolin, G., de Oliveira, M.C.: Genuine multipartite entanglement in quantum phase transitions. Phys. Rev. A 73(1), 010305 (2007). https://doi.org/10.1103/PhysRevA.73.010305

    Article  Google Scholar 

  56. de Oliveira, T.R., Rigolin, G., de Oliveira, M.C., Miranda, E.: Multipartite entanglement signature of quantum phase transitions. Phys. Rev. Lett. 97, 170401 (2006). https://doi.org/10.1103/PhysRevLett.97.170401

    Article  Google Scholar 

  57. Hofmann, M., Osterloh, A., Gühne, O.: Scaling of genuine multiparticle entanglement close to a quantum phase transition. Phys. Rev. B 89, 134101 (2014). https://doi.org/10.1103/PhysRevB.89.134101

    Article  ADS  Google Scholar 

  58. Soldati, R.R., Mitchison, M.T., Landi, G.T.: Multipartite quantum correlations in a two-mode Dicke model. Phys. Rev. A 104, 052423 (2021). https://doi.org/10.1103/PhysRevA.104.052423

    Article  ADS  MathSciNet  Google Scholar 

  59. Sabín, C., García-Alcaine, G.A.: A classification of entanglement in three-qubit systems. Eur. Phys. J. D 48, 435–442 (2008). https://doi.org/10.1140/epjd/e2008-00112-5

    Article  ADS  MathSciNet  Google Scholar 

  60. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002). https://doi.org/10.1103/PhysRevA.65.032314

    Article  ADS  Google Scholar 

  61. Song, X., Wu, T., Ye, L.: Negativity and quantum phase transition in the anisotropic XXZ model. Eur. Phys. J. D 67, 96 (2013). https://doi.org/10.1140/epjd/e2013-30707-4

    Article  ADS  Google Scholar 

  62. Sun, W.-Y., Xu, S., C.-C., L., Ye, L.: Negativity and quantum phase transition in the spin model using the quantum renormalization-group method. Int. J. Theor. Phys. 55, 2548–2557 (2016). https://doi.org/10.1007/s10773-015-2890-x

  63. Gonz\(\acute{a}\)lez, J., Martin-Deigado, M.A., Sierrra, G., Vozmediano, A.H., Vozmediano, A.H.: Quantum Electron Liquids and High-\(T_c\) Superconductivity. Springer, Berlin (1995)

  64. Barouch, E., McCoy, B.M.: Statistical mechanics of the \(XY\) model. II. Spin-correlation functions. Phys. Rev. A 3, 786–804 (1971). https://doi.org/10.1103/PhysRevA.3.786

  65. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996). https://doi.org/10.1103/PhysRevLett.77.1413

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223(1), 1–8 (1996). https://doi.org/10.1016/S0375-9601(96)00706-2

  67. Miranowicz, A., Grudka, A.: A comparative study of relative entropy of entanglement, concurrence and negativity. J. Opt. B Quantum Semiclassical Opt. 6(12), 542 (2004). https://doi.org/10.1088/1464-4266/6/12/009

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (under Grant No. 12074107), the Program of Outstanding Young and Middle-aged Scientific and Technological Innovation Team of Colleges and Universities in Hubei Province of China (under Grant No. T2020001) and the Innovation Group Project of the Natural Science Foundation of Hubei Province of China (under Grant No. 2022CFA012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, YD., Zhou, B. Renormalization of negativity and quantum phase transition in the spin-1/2 XY chain. Quantum Inf Process 22, 260 (2023). https://doi.org/10.1007/s11128-023-04024-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04024-y

Keywords

Navigation