Skip to main content
Log in

Multipartite entanglement and criticality in two-dimensional XXZ model

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the multipartite entanglement and the trace distance for the two-dimensional XXZ anisotropic spin-\(\frac{1}{2}\) lattice and observe that the quantum phase transition is independent of the chosen quantifier. It is found that for a many-body quantum system the multipartite entanglement is more robust than the bipartite entanglement due to the monogamy property. Quantum renormalization group technique is used to solve the two-dimensional XXZ model that results in only one unstable fixed point (the critical point). In thermodynamic limit, the quantum phase transition point coincides with the critical point. After sufficient iterations of the quantum renormalization group, we observe two different saturated values of the quantifiers that represent two separate phases, the spin fluid phase and the Néel phase. The first derivative and the scaling behavior of the renormalized entanglement quantifiers are computed. At phase transition point, the non-analytic behavior of the first derivative of the two quantifiers as a function of lattice size is examined and it is found that the universal finite-size scaling law is obeyed. Furthermore, we observe that at the critical point the scaling exponent for the multipartite entanglement and the trace distance can describe the correlation length of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66(3), 032110 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  2. Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature 416(6881), 608–610 (2002)

    Article  ADS  Google Scholar 

  3. Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003)

    Article  ADS  Google Scholar 

  4. Wu, L.A., Sarandy, M.S., Lidar, D.A.: Quantum phase transitions and bipartite entanglement. Phys. Rev. Lett. 93, 250404 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  5. Wu, L.A., Sarandy, M.S., Lidar, D.A., Sham, L.J.: Linking entanglement and quantum phase transitions via density-functional theory. Phys. Rev. A 74, 052335 (2006)

    Article  ADS  Google Scholar 

  6. Langari, A.: Phase diagram of the antiferromagnetic XXZ model in the presence of an external magnetic field. Phys. Rev. B 58, 14467 (1998)

    Article  ADS  Google Scholar 

  7. Jafari, R., Langari, A.: Phase diagram of the one-dimensional \(S=\frac{1}{2}\) XXZ model with ferromagnetic nearest-neighbor and antiferromagnetic next-nearest-neighbor interactions. Phys. Rev. B 76, 014412 (2007)

    Article  ADS  Google Scholar 

  8. Yao, Y., Li, H.-W., Zhang, C.-M., Yin, Z.-Q., Chen, W., Guo, G.-C., Han, Z.-F.: Performance of various correlation measures in quantum phase transitions using the quantum renormalization-group method. Phys. Rev. A 86, 042102 (2012)

    Article  ADS  Google Scholar 

  9. Qiu, L., Tang, G., Yang, X.-Q., Wang, A.-M.: Relating tripartite quantum discord with multisite entanglement and their performance in the one-dimensional anisotropic XXZ model. Europhys. Lett. 105, 30005 (2014)

    Article  ADS  Google Scholar 

  10. Liu, C.-C., Xu, S., He, J., Ye, L.: Probing \(\pi \)-tangle and quantum phase transition in the one-dimensional anisotropic XY model with Dzyaloshinskii-Moriya interaction. Ann. Phys. 356, 417 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Gilchrist, A., Langford, N.K., Nielsen, M.A.: Distance measures to compare real and ideal quantum processes. Phys. Rev. A 71(6), 062310 (2005)

    Article  ADS  Google Scholar 

  12. Breuer, H.P., Laine, E.-M., Piilo, J.: Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  13. Smirne, A., Breuer, H.P., Piilo, J., Vacchini, B.: Initial correlations in open-systems dynamics: the Jaynes-Cummings model. Phys. Rev. A 82, 062114 (2010)

    Article  ADS  Google Scholar 

  14. Luo, D.W., Xu, J.B.: Trace distance and scaling behavior of a coupled cavity lattice at finite temperature. Phys. Rev. A 87(1), 013801 (2013)

    Article  ADS  Google Scholar 

  15. Luo, D.W., Xu, J.B.: Quantum phase transition by employing trace distance along with the density matrix renormalization group. Ann. Phys. 354, 298–305 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  16. Sachdev, S.: Quantum phase transitions. Phys. World 12(4), 33 (1999)

    Article  Google Scholar 

  17. Vojta, T.: Quantum Phase Transitions. In: Computational Statistical Physics. Springer, Berlin, Heidelberg (2002)

  18. Bell, J.S.: On the Einstein Podolsky rosen paradox. Physics 1, 195 (1964)

    Article  MathSciNet  Google Scholar 

  19. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Communication. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  20. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022–5025 (1997)

    Article  ADS  Google Scholar 

  22. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  MATH  Google Scholar 

  23. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53(4), 2046 (1996)

    Article  ADS  Google Scholar 

  24. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54(5), 3824 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65(3), 032314 (2002)

    Article  ADS  Google Scholar 

  26. Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474(1), 1–75 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  27. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61(5), 052306 (2000)

    Article  ADS  Google Scholar 

  28. Osborne, T.J., Verstraete, F.: General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96(22), 220503 (2006)

    Article  ADS  Google Scholar 

  29. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. de Oliveira, T.R., Cornelio, M.F., Fanchini, F.F.: Monogamy of entanglement of formation. Phys. Rev. A 89, 034303 (2014)

    Article  ADS  Google Scholar 

  31. Bai, Y.K., Xu, Y.F., Wang, Z.D.: General monogamy relation for the entanglement of formation in multiqubit systems. Phys. Rev. Lett. 113(10), 100503 (2014)

    Article  ADS  Google Scholar 

  32. Zanardi, P., Paunković, N.: Ground state overlap and quantum phase transitions. Phys. Rev. E 74, 031123 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  33. Gu, S.J.: Fidelity approach to quantum phase transitions. Int. J. Mod. Phys. B 24(23), 4371–4458 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Wilson, K.G.: The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47(4), 773 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  35. Foulkes, W.M., Mitas, L., Needs, R.J., Rajagopal, G.: Quantum monte carlo simulations of solids. Rev. Mod. Phys. 73, 33–83 (2001)

    Article  ADS  Google Scholar 

  36. White, S.R.: Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69(19), 2863–2866 (1992)

    Article  ADS  Google Scholar 

  37. Martin-Delgado, M.A.: in Strongly Correlated Magnetic and Superconducting Systems, Lecture Notes in Physics. Springer 478 (1997)

  38. Martin-Delgado, M.A., Sierra, G.: Analytic formulations of the density matrix renormalization group. Int. J. Mod. Phys. A 11, 3145 (1996)

    Article  ADS  Google Scholar 

  39. Rodriguez Laguna, J.: Real space renormalization group, Techniques and Applications, arXiv: cond-mat/0207340v1 (2002)

  40. Langari, A.: Quantum renormalization group of XYZ model in a transverse magnetic field. Phys. Rev. B 69, 100402(R) (2004)

    Article  ADS  Google Scholar 

  41. Jafari, R., Kargarian, M., Langari, A., Siahatgar, M.: Phase diagram and entanglement of the Ising model with Dzyaloshinskii-Moriya interaction. Phys. Rev. B 78, 214414 (2008)

    Article  ADS  Google Scholar 

  42. Kargarian, M., Jafari, R., Langari, A.: Dzyaloshinskii-Moriya interaction and anisotropy effects on the entanglement of the Heisenberg model. Phys. Rev. A 79, 042319 (2009)

    Article  ADS  Google Scholar 

  43. Ma, F.-W., Liu, S.-X., Kong, X.-M.: Entanglement and quantum phase transition in the one-dimensional anisotropic XY model. Phys. Rev. A 83, 062309 (2011)

    Article  ADS  Google Scholar 

  44. Ma, F.-W., Liu, S.-X., Kong, X.-M.: Quantum entanglement and quantum phase transition in the XY model with staggered Dzyaloshinskii-Moriya interaction. Phys. Rev. A 84, 042302 (2011)

    Article  ADS  Google Scholar 

  45. Usman, M., Ilyas, A., Khan, K.: Quantum renormalization group of the XY model in two dimensions. Phys. Rev. A 92, 032327 (2015)

    Article  ADS  Google Scholar 

  46. Usman, M., Ilyas, A., Khan, K.: Spatial dependence of entanglement renormalization in XY model. Quantum Inf Process 16, 232 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Usman, M., Khan, K.: Entanglement and multipartite quantum correlations in two-dimensional XY model with Dzyaloshinskii-Moriya interaction. Euro. Phys. J. D 74, 181 (2020)

    Article  ADS  Google Scholar 

  48. Wu, W., Xu, J.-B.: Renormalization of trace distance and multipartite entanglement close to the quantum phase transitions of one- and two-dimensional spin-chain systems. Europhys. Lett. 115, 40006 (2016)

    Article  ADS  Google Scholar 

  49. Cheng, J.-Q., Wu, W., Xu, J.-B.: Multipartite entanglement in an XXZ spin chain with Dzyaloshinskii-Moriya interaction and quantum phase transition. Quant. Info. Process. 16, 231 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Kargarian, M., Jafari, R., Langari, A.: Renormalization of concurrence: the application of the quantum renormalization group to quantum-information systems. Phys. Rev. A 76, 060304(R) (2007)

    Article  ADS  Google Scholar 

  51. Kargarian, M., Jafari, R., Langari, A.: Renormalization of entanglement in the anisotropic Heisenberg (XXZ) model. Phys. Rev. A 77, 032346 (2008)

    Article  ADS  Google Scholar 

  52. Efrati, E., Wang, Z., Kolan, A., Kadanoff, L.P.: Real-space renormalization in statistical mechanics. Rev. Mod. Phys 86(2), 647–667 (2013)

    Article  ADS  Google Scholar 

  53. Dmitriev, D.V., Krivnov, V.Y., Ovchinnikov, A.A., Langari, A.: One-dimensional anisotropic Heisenberg model in the transverse magnetic field. J. Exp. Theor. Phys. 95, 538–549 (2002)

    Article  ADS  Google Scholar 

  54. Sachs, B., Wehling, T.O., Novoselov, K.S., Lichtenstein, A.I., Katsnelson, M.I.: Ferromagnetic two-dimensional crystals: single layers of \(K_2 CuF_4\). Phys. Rev. B 88, 201402(R) (2013)

    Article  ADS  Google Scholar 

  55. Chittari, B.L., Park, Y., Lee, D., Han, M., MacDonald, A.H., Hwang, E., Jung, J.: Electronic and magnetic properties of single-layer \(MPX_3\) metal phosphorous trichalcogenides. Phys. Rev. B 94, 184428 (2016)

    Article  ADS  Google Scholar 

  56. Lee, J.U., Lee, S., Ryoo, J.H., Kang, S., Kim, T.Y., Kim, P., Park, C.-H., Park, J.-G., Cheong, H.: Ising-type magnetic ordering in atomically thin \(FePS_3\). Nano. Lett. 16, 7433–7438 (2016)

    Article  ADS  Google Scholar 

  57. Barnes, T.: The 2D Heisenberg antiferromagnet in high-\(T_c\) superconductivity: a review of numerical techniques and results. Int. J. Mod. Phys. C 2, 659–709 (1991)

    Article  ADS  Google Scholar 

  58. Makivić, M.S., Ding, H.-Q.: Two-dimensional spin-1/2 Heisenberg antiferromagnet: a quantum Monte Carlo study. Phys. Rev. B 43, 3562 (1991)

    Article  ADS  Google Scholar 

  59. McGuire, M.A., Dixit, H., Cooper, V.R., Sales, B.C.: Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator \(CrI_3\). Chem. Matter. 27(2), 612–620 (2015)

    Article  Google Scholar 

  60. Lee, K.W., Lee, C.E., Kim, I.-M.: Helicity modulus and vortex density in the two-dimensional easy-plane Heisenberg model on a square lattice. Solid State Commun. 135, 95 (2005)

    Article  ADS  Google Scholar 

  61. Cuccoli, A., Tognetti, V.: Two-dimensional XXZ model on a square lattice: a Monte Carlo simulation. Phys. Rev. B 52, 14 (1995)

    Article  Google Scholar 

  62. deSousaa, J.R., Brancob, N.S., Boechatc, B., Cordeiroc, C.: Quantum spin-12 two-dimensional XXZ model: an alternative quantum renormalization-group approach. Physica A 328, 167–173 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  63. Lima, S.L.: Effect of Dzyaloshinskii-Moriya interaction on quantum entanglement in superconductors models of high \(T_c\). Eur. Phys. J. D 73, 6 (2019)

    Article  ADS  Google Scholar 

  64. Zeng, C., Farell, D.J.J., Bishop, R.F.: An efficient implementation of high-order coupled-cluster techniques applied to quantum magnets. J. Stat. Phys. 90, 327–361 (1998)

    Article  ADS  MATH  Google Scholar 

  65. Nishimori, H., Ozeki, Y.: Ground-state long-range order in the two-dimensional XXZ model. J. Phys. Soc. Jpn. 58, 1027–1030 (1989)

    Article  ADS  Google Scholar 

  66. Peres, A., Mayer, M.E.: Quantum theory: concepts and methods. Phys. Today 47(12), 65–66 (1994)

    Article  ADS  Google Scholar 

  67. Koashi, M., Winter, A.: Monogamy of quantum entanglement and other correlations. Phys. Rev. A 69, 022309 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  68. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  69. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A: Math. Gen. 34, 6899 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011)

    Article  ADS  Google Scholar 

  71. Campbell, S., Mazzola, L., Chiara, G.D., Apollaro, T.J.G., Plastina, F., Busch, T., Paternostro, M.: Global quantum correlations in finite-size spin chains. New J. Phys. 15, 043033 (2013)

    Article  ADS  Google Scholar 

  72. Joya, W., Khan, S., Khan, K.: Analytic renormalized bipartite and tripartite quantum discords with quantum phase transition in XXZ spins chain. Eur. Phys. J. Plus 132, 215 (2017)

    Article  Google Scholar 

  73. Jafari, R., Langari, A.: Three-qubits ground state and thermal entanglement of anisotropic Heisenberg (XXZ) and ising models with Dzyaloshinskii-Moriya interaction. Int. J. Quantum Inf. 09(4), 1057–1079 (2011)

    Article  MathSciNet  Google Scholar 

  74. Beekman, A.J., Rademaker, L., Wezel, J.V.: An Introduction to Spontaneous Symmetry Breaking. SciPost Phys. Lect. Notes 11, 1 (2019)

    Google Scholar 

  75. Yang, M.F.: Reexamination of entanglement and the quantum phase transition. Phys. Rev. A 71(3), 309–315 (2005)

    Article  Google Scholar 

  76. Qian, X., Shi, T., Li, Y., Song, Z., Sun, C.: Characterizing entanglement by momentum jump in the frustrated Heisenberg ring at a quantum phase transition. Phys. Rev. A 72(1), 012333 (2005)

    Article  ADS  Google Scholar 

  77. Montakhab, A., Asadian, A.: Multi-partite entanglement and quantum phase transition in the one-, two-, and three-dimensional transverse field Ising model. Phys. Rev. A 82(6), 062313 (2010)

    Article  ADS  Google Scholar 

  78. Hofmann, M., Osterloh, A., Gühne, O.: Scaling of genuine multiparticle entanglement close to a quantum phase transition. Phys. Rev. B 89, 134101 (2014)

    Article  ADS  Google Scholar 

  79. Giampaolo, S.M., Hiesmayr, B.C.: Genuine multipartite entanglement in the XY model. Phys. Rev. A 88, 052305 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tahir Iftikhar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iftikhar, M.T., Usman, M. & Khan, K. Multipartite entanglement and criticality in two-dimensional XXZ model. Quantum Inf Process 20, 259 (2021). https://doi.org/10.1007/s11128-021-03185-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03185-y

Keywords

Navigation