Skip to main content
Log in

Public verifiable measurement-only blind quantum computation based on entanglement witnesses

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Recently, Sato et al. proposed an public verifiable blind quantum computation (BQC) protocol by inserting a third-party arbiter. However, it is not true public verifiable in a sense, because the arbiter is determined in advance and participates in the whole process. In this paper, a public verifiable protocol for measurement-only BQC is proposed. The fidelity between arbitrary states and the graph states of 2-colorable graphs is estimated by measuring the entanglement witnesses of the graph states, so as to verify the correctness of the prepared graph states. Compared with the previous protocol, our protocol is public verifiable in the true sense by allowing other random clients to execute the public verification. It also has greater advantages in the efficiency, where the number of local measurements is \(O(n^3\log {n})\) and graph states’ copies is \(O(n^2\log {n})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Childs, A.M.: Secure assisted quantum computation. Quantum Inf. Comput. 5(6), 456–466 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Aharonov, D., Ben-Or, M., Eban, E., Mahadev, U.: Interactive proofs for quantum computations (2017). arXiv:1704.04487

  3. Dupuis, F., Nielsen, J.B., Salvail, L.: Actively secure two-party evaluation of any quantum operation. In: Annual Cryptology Conference, pp. 794–811. Springer

  4. Broadbent, A., Gutoski, G., Stebila, D.: Quantum one-time programs. In: Annual Cryptology Conference, pp. 344–360. Springer

  5. Broadbent, A.: Delegating private quantum computations. Can. J. Phys. 93(9), 941–946 (2015)

    Article  ADS  Google Scholar 

  6. Broadbent, A., Fitzsimons, J.F., Kashefi, E.: Universal blind quantum computation. In: 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pp. 517–526. IEEE

  7. Morimae, T., Fujii, K.: Blind quantum computation protocol in which alice only makes measurements. Phys. Rev. A 87(5), 050301 (2013)

    Article  ADS  Google Scholar 

  8. Fitzsimons, J.F., Kashefi, E.: Unconditionally verifiable blind quantum computation. Phys. Rev. A 96(1), 012303 (2017)

    Article  ADS  Google Scholar 

  9. Morimae, T.: Measurement-only verifiable blind quantum computing with quantum input verification. Phys. Rev. A 94(4), 042301 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  10. Fujii, K., Hayashi, M.: Verifiable fault tolerance in measurement-based quantum computation. Phys. Rev. A 96(3), 030301 (2017)

    Article  ADS  Google Scholar 

  11. Hayashi, M., Hajdušek, M.: Self-guaranteed measurement-based quantum computation. Phys. Rev. A 97(5), 052308 (2018)

    Article  ADS  Google Scholar 

  12. Takeuchi, Y., Morimae, T.: Verification of many-qubit states. Phys. Rev. X 8(2), 021060 (2018)

    Google Scholar 

  13. Takeuchi, Y., Mantri, A., Morimae, T., Mizutani, A., Fitzsimons, J.F.: Resource-efficient verification of quantum computing using serfling’s bound. npj Quantum Inf. 5(1), 1–8 (2019)

    Article  Google Scholar 

  14. Hayashi, M., Morimae, T.: Verifiable measurement-only blind quantum computing with stabilizer testing. Phys. Rev. Lett. 115(22), 220502 (2015)

    Article  ADS  Google Scholar 

  15. Xu, Q.S., Tan, X.Q., Huang, R., Li, M.Q.: Verification of blind quantum computation with entanglement witnesses. Phys. Rev. A 104(4), 042412 (2021)

    Article  ADS  Google Scholar 

  16. Honda, K.: Publicly verifiable blind quantum computation (2016). arXiv:1604.00116

  17. Sato, G., Koshiba, T., Morimae, T.: Arbitrable blind quantum computation. Quantum Inf. Process. 18(12), 1–8 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474(1–6), 1–75 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  19. Raussendorf, R., Harrington, J., Goyal, K.: Topological fault-tolerance in cluster state quantum computation. New J. Phys. 9(6), 199 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  20. Shan, R.T., Chen, X.B., Yuan, K.G.: Multi-party blind quantum computation protocol with mutual authentication in network. Sci. China Inf. Sci. 64(6), 1–14 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  21. Li, Q., Li, Z.L., Chan, W.H., Zhang, S.Y., Liu, C.D.: Blind quantum computation with identity authentication. Phys. Lett. A 382(14), 938–941 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. Gühne, O., Hyllus, P.: Investigating three qubit entanglement with local measurements. Int. J. Theor. Phys. 42(5), 1001–1013 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58, 13 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lidar, D.A., Brun, T.A.: Quantum Error Correction. Cambridge, UK, Boston (2013)

    Book  Google Scholar 

  25. Barrett, S.D., Stace, T.M.: Fault tolerant quantum computation with very high threshold for loss errors. Phys. Rev. Lett. 105(20), 200502 (2010)

    Article  ADS  Google Scholar 

  26. Serfling, R.J.: Probability inequalities for the sum in sampling without replacement. Ann. Stat. 2(1), 39–48 (1974)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers and editors for their comments that improved the quality of this paper. This work is supported by the National Natural Science Foundation of China (62071240), the Innovation Program for Quantum Science and Technology (2021ZD0302902), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Jie Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

Articles do not rely on clinical trials.

Human and animal participants

All submitted manuscripts containing research does not involve human participants and/or animal experimentation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1 Proof of Theorem 1

Appendix 1 Proof of Theorem 1

In the theorem, (1) has been proved [15] with a condition \(n\ge 6\). Now, we prove (2). At first we introduce the following two probability bounds which will be used in the analysis, where \(\Pr \left( \cdot \right) \) represents the event probability and \(\textrm{E}\left( \cdot \right) \) represents the mathematical expectation:

  1. (1)

    Serfling’s bound[26] Given a set \(Y = (Y_1,Y_2,...,Y_T )\) of T binary random variables with \(Y_k\in \{0, 1\}\) and two arbitrary positive integers N and K that satisfy \(T = N + K\), select K samples that are distinguished from each other independently, evenly and randomly from Y, and let \(\Pi \) be the set of these samples, \({\overline{\Pi }}=Y-\Pi \), then \(\forall 0<v<1\), we have

    $$\begin{aligned} \begin{aligned}&\Pr \left( {\sum \limits _{k \in {{\overline{\Pi }}} } {{Y_k}} \le {N \over K}\sum \limits _{k \in \Pi } {{Y_k}} + Nv} \right) \\&\ge 1 - \exp \left( { - {{2{v^2}N{K^2}} \over {\left( {N + K} \right) \left( {K + 1} \right) }}} \right) . \end{aligned}\end{aligned}$$
    (A1)
  2. (2)

    Azuma–Hoeffding bound[23] Given independent random variables \({\xi _1},{\xi _2}, \cdots ,{\xi _n}\) where \({\xi _i} \in \left[ {{a_i},{b_i}} \right] , i=1,2,\cdots ,n\), then \(\forall t > 0\), we have

    $$\begin{aligned} \begin{aligned}&\Pr \left( {{{{\xi _1} + {\xi _2} + \cdots + {\xi _n}} \over n} - \mathrm{{E} }\left( {{{{\xi _1} + {\xi _2} + \cdots + {\xi _n}} \over n}} \right) \le t} \right) \\&\ge 1 - \exp \left( { - {{2{n^2}{t^2}} \over {\sum \limits _{i = 1}^n {\left( {{b_i} - {a_i}} \right) } }}} \right) . \end{aligned}\end{aligned}$$
    (A2)

For the first K registers selected, we denote them as \(\Pi ^{(1)}\) and the rest 4K as \({\overline{\Pi }}^{(1)}\). Let \(T = 5K, N=4K, Y_k = \left\{ \begin{matrix}0,M_1^{\varrho '_k} = 1 \\ 1,M_1^{\varrho '_k} = 0 \end{matrix}\right. \), where \(\varrho '_k\) is the state in the k-th register in \(\Pi ^{(1)}\) or \({\overline{\Pi }}^{(1)}\), then we have

$$\begin{aligned} \Pr \left( {\sum \limits _{k \in {{{{\overline{\Pi }}} }^{\left( 1 \right) }}} {{Y_k}} \le {{4K} \over K}\sum \limits _{k \in {\Pi ^{\left( 1 \right) }}} {{Y_k}} + 4Kv} \right) \ge 1 - \exp \left( { - {{2{v^2}4K{K^2}} \over {\left( {4K + K} \right) \left( {K + 1} \right) }}} \right) \nonumber \\ \end{aligned}$$
(A3)

by Eq. A1, which means if we perform the j-th measurement on the rest 4K registers, then the upper bound of the number of the registers satisfying \(M_1^\varrho = 0\) (i.e., \({Y_k} = 1\)) in \({{{\overline{\Pi }}} ^{\left( 1 \right) }}\) is \(4\sum \limits _{k \in {\Pi ^{\left( 1 \right) }}} {{Y_k}} + 4Kv\), with the probability on the right side of Eq. A3. Similarly, for the second K registers selected, we denote them as \(\Pi ^{(2)}\) and the rest 3K as \({\overline{\Pi }}^{(2)}\). Let \(T = 4K, N=3K, Y_k = \left\{ \begin{matrix} {0,M_2^{\varrho '_k} = 1}\\ {1,M_2^{\varrho '_k} = 0} \end{matrix} \right. \), where \(\varrho '_k\) is the state in the k-th register in \(\Pi ^{(2)}\) or \({\overline{\Pi }}^{(2)}\), then we have

$$\begin{aligned} \Pr \left( {\sum \limits _{k \in {{{{\overline{\Pi }}} }^{2}}} {{Y_k}} \le {{3K} \over K}\sum \limits _{k \in {\Pi ^{2}}} {{Y_k}} + 3Kv} \right) \ge 1 - \exp \left( { - {{2{v^2}3K{K^2}} \over {\left( {3K + K} \right) \left( {K + 1} \right) }}} \right) ,\nonumber \\ \end{aligned}$$
(A4)

which means if we perform the j-th measurement on the rest 3K registers, then the upper bound of the number of the registers satisfying \(M_2^\varrho = 0\) in \({{{\overline{\Pi }}} ^{\left( 2 \right) }}\) is \(4\sum \limits _{k \in {\Pi ^{\left( 2 \right) }}} {{Y_k}} + 4Kv\), with the probability on the right side of Eq. A4. In the protocol, any two clients do not trust each other, and thus, it can be considered that the rest 3K registers have not been measured. If we perform the first measurement on the rest 3K registers, there will be \(3K - \left( {4\sum \limits _{k \in {\Pi ^{\left( 1 \right) }}} {{Y_k}} + 4Kv} \right) \) registers satisfying \(M_1^\varrho = 1\) at least, i.e.,

$$\begin{aligned} \sum \limits _{k = 1}^{3K} {M_1^{{\varrho _k}}} \ge 3K - \left( {4\sum \limits _{k \in {\Pi ^{\left( 1 \right) }}} {{Y_k}} + 4Kv} \right) . \end{aligned}$$
(A5)

Similarly, we have

$$\begin{aligned} \sum \limits _{k = 1}^{3K} {M_2^{{\varrho _k}}} \ge 3K - \left( {3\sum \limits _{k \in {\Pi ^{\left( 2 \right) }}} {{Y_k}} + 3Kv} \right) . \end{aligned}$$
(A6)

Let \(n = 3K, \xi _k = M_1^\varrho \) or \(M_2^\varrho \), then by Eq. A2 we have

$$\begin{aligned} \Pr \left( {{1 \over {3K}}\sum \limits _{k = 1}^{3K} {M_1^{{\varrho _k}}} - {\overline{M}} _1^\varrho \le t} \right) \ge 1 - \exp \left( { - 2 \cdot 3K{t^2}} \right) . \end{aligned}$$
(A7)

By \(Tr\left( {\prod \limits _{i \in {S_1}} {{{{g_i} + I} \over 2}} \varrho } \right) = {\overline{M}} _1^\varrho \) and Eq. A5, we have

$$\begin{aligned} \begin{aligned}&\Pr \left( {Tr\left( {\prod \limits _{i \in {S_1}} {{{{g_i} + I} \over 2}} \varrho } \right) > 1 - {1 \over {3K}}\left( {4\sum \limits _{k \in {\Pi ^{\left( 1 \right) }}} {{Y_k}} + 4Kv} \right) - t} \right) \\&\ge 1 - \exp \left( { - 6K{t^2}} \right) \end{aligned}, \end{aligned}$$
(A8)

and similarly, we have

$$\begin{aligned} \begin{aligned}&\Pr \left( {Tr\left( {\prod \limits _{i \in {S_2}} {{{{g_i} + I} \over 2}} \varrho } \right) > 1 - {1 \over {3K}}\left( {3\sum \limits _{k \in {\Pi ^{\left( 2 \right) }}} {{Y_k}} + 3Kv} \right) - t} \right) \\&\ge 1 - \exp \left( { - 6K{t^2}} \right) \end{aligned}. \end{aligned}$$
(A9)

Therefore, we have

$$\begin{aligned} \begin{aligned}&F \ge {1 \over 2} - {1 \over 2}Tr\left( {{W^{\left( 2 \right) }}\varrho } \right) \\&= {1 \over 2} - {1 \over 2}Tr\left( {3I\varrho } \right) + {1 \over 2}Tr\left( {2\prod \limits _{i \in {S_1}} {{{{g_i} + I} \over 2}\varrho } } \right) + Tr\left( {2\prod \limits _{i \in {S_2}} {{{{g_i} + I} \over 2}\varrho } } \right) \\&= - 1 + 1 - {1 \over {AK}}\left( {4\sum \limits _{k \in {\Pi ^{\left( 1 \right) }}} {{Y_k}} + 4Kv} \right) - t + 1 - {1 \over {3K}}\left( {3\sum \limits _{k \in {\Pi ^{\left( 2 \right) }}} {{Y_k}} + 3Kv} \right) - t \\&= 1 - \left( {2 + {1 \over 3}} \right) v - 2t - {1 \over {3K}}\left( {4\sum \limits _{k \in {\Pi ^{\left( 1 \right) }}} {{Y_k}} + 3\sum \limits _{k \in {\Pi ^{\left( 2 \right) }}} {{Y_k}} } \right) \\&\ge 1 - \left( {2 + {1 \over 3}} \right) v - 2t - {4 \over {3K}}\left( {\sum \limits _{k \in {\Pi ^{\left( 1 \right) }}} {{Y_k}} + \sum \limits _{k \in {\Pi ^{\left( 2 \right) }}} {{Y_k}} } \right) \\&= 1 - \left( {2 + {1 \over 3}} \right) v - 2t - {4 \over {3K}}\left( {{K_1} + {K_2}} \right) . \end{aligned} \end{aligned}$$
(A10)

with a probability

$$\begin{aligned} \begin{aligned}&P \ge \left[ {1 - \exp \left( { - {{8{v^2}K} \over {5\left( {1 + {1 \over K}} \right) }}} \right) } \right] \left[ {1 - \exp \left( { - {{3{v^2}K} \over {2\left( {1 + {1 \over K}} \right) }}} \right) } \right] {\left[ {1 - \exp \left( { - 6K{t^2}} \right) } \right] ^2} \\&\ge {\left[ {1 - \exp \left( { - K{v^2}} \right) } \right] ^2}{\left[ {1 - \exp \left( { - 6K{t^2}} \right) } \right] ^2} \end{aligned}, \end{aligned}$$
(A11)

where the second inequality in Eq. A11 holds as long as \(K \ge 2\). Obviously, \(\sum \limits _{k \in {\Pi ^{\left( 1 \right) }}} {{Y_k}} = {K_1}\) and \(\sum \limits _{k \in {\Pi ^{\left( 2 \right) }}} {{Y_k}} = {K_2}\) in Eq. A10. To make \(F = \langle G |\rho |G \rangle \) is \(1 - O\left( {{1 \over n}} \right) \), which is high enough, we need that \(v = O\left( {{1 \over n}} \right) , t = O\left( {{1 \over n}} \right) , {4 \over {3K}}\left( {{K_1} + {K_2}} \right) \le {1 \over n}\) which leads to \(F = 1 - O\left( {{1 \over n}} \right) \). Therefore, we set \(v = {{\sqrt{{\lambda _2}} } \over n}, t = {{\sqrt{{\lambda _2}} } \over {\sqrt{6} n}}\), and then consider the acceptance condition \({K_1} + {K_2} \le {{3K} \over {4n}}\) in Algorithm 1; we have

$$\begin{aligned} F \ge 1 - {7 \over 3}{{\sqrt{{\lambda _2}} } \over n} - 2{{\sqrt{{\lambda _2}} } \over {\sqrt{6} n}} - {1 \over n} = 1 - {{\left( {{7 \over 3} + {2 \over {\sqrt{6} }}} \right) \sqrt{{\lambda _2}} + 1} \over n} \ge 1 - {{3.15\sqrt{{\lambda _2}} + 1} \over n}\nonumber \\ \end{aligned}$$
(A12)

with a probability

$$\begin{aligned} P \ge {\left[ {1 - \exp \left( { - {{{\lambda _2}} \over {{n^2}}}K} \right) } \right] ^4} \ge 1 - 4\exp \left( { - {{{\lambda _2}} \over {{n^2}}}K} \right) \ge 1 - 4\exp \left( { - {{{\lambda _2}} \over {{n^2}}}{n^2}\log n} \right) .\nonumber \\ \end{aligned}$$
(A13)

To make the probability \(P=1 - O \left( {n ^ {-\lambda }}\right) \) for a constant \(\lambda \), we set \(K = \left\lceil {{n^2}\log n} \right\rceil \), then

$$\begin{aligned} P \ge 1 - 4\exp \left( { - {{{\lambda _2}} \over {{n^2}}}{n^2}\log n} \right) = 1 - 4{n^{ - {\lambda _2}}}, \end{aligned}$$
(A14)

which is high enough. The condition for above FP both to be positive is \({\log _n}4 \le {\lambda _2} \le {{{{\left( {n - 1} \right) }^2}} \over {10}}\), where \(n \ge 5\). When \(n \ge 5\), we have \({n^2} > {{{{\left( {n - 1} \right) }^2}} \over {10}}\), thus \({\lambda _2} < {n^2}\), then \(v = {{\sqrt{{\lambda _2}} } \over n} < 1\). Consider the condition of (1), we have \(n\ge 6\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, WJ., Li, ZX., Li, WB. et al. Public verifiable measurement-only blind quantum computation based on entanglement witnesses. Quantum Inf Process 22, 137 (2023). https://doi.org/10.1007/s11128-023-03859-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03859-9

Keywords

Navigation