Skip to main content
Log in

Measurement-based universal blind quantum computation with minor resources

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Blind quantum computation (BQC) enables a client with less quantum computational ability to delegate her quantum computation to a server with strong quantum computational power while preserving the client’s privacy. Generally, many-qubit entangled states are often used to complete BQC tasks. But for a large-scale entangled state, it is difficult to be described since its Hilbert space dimension is increasing exponentially. Furthermore, the number of entangled qubits is limited in experiment of existing works. To tackle this problem, in this paper we propose a universal BQC protocol based on measurement with minor resources, where the trap technology is adopted to verify correctness of the server’s measurement outcomes during computation and testing process. In our model, there are two participants, a client who prepares initial single-qubit states and a server that performs universal quantum computation. The client is almost classical since she does not require any quantum computational power, quantum memory. To realize the client’s universal BQC, we construct an \(m\times n\) latticed state composed of six-qubit cluster states and eight-qubit cluster states, which needs less qubits than the brickwork state. Finally, we analyze and prove the blindness, correctness, universality and verifiability of our proposed BQC protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 400, 97–117 (1985)

    MathSciNet  MATH  ADS  Google Scholar 

  2. Deutsch, D.: Quantum computational networks. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 425, 73–90 (1989)

    MathSciNet  MATH  ADS  Google Scholar 

  3. Griffiths, R.B., Niu, C.S.: Semiclassical Fourier transform for quantum computation. Phys. Rev. Lett. 76, 3228–3231 (1996)

    Article  ADS  Google Scholar 

  4. Feynman, R.P.: Simulating physics with computers. Int. J Theor. Phys. 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  5. Childs, A.M.: Secure assisted quantum computation. Quantum Inf. Comput. 5, 456–466 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Fisher, K.A.G., Broadbent, A., Shalmet, L.K., Yan, Z., Lavoie, J., Prevedel, R., Jennewein, T., Resch, K.J.: Quantum computing on encrypted data. Nat. Commun. 5, 3074 (2014)

    Article  ADS  Google Scholar 

  7. Broadbent, A.: Delegating private quantum computations. Can. J. Phys. 93, 941–946 (2015)

    Article  ADS  Google Scholar 

  8. P\(\acute{e}\)rez-Delgado, C.A., Fitzsimons, J.F.: Iterated gate teleportation and blind quantum computation. Phys. Rev. Lett. 114, 220502 (2015)

  9. Kashefi, E., Pappa, A.: Multiparty delegated quantum computing. Cryptography 1(2), 1–20 (2017)

    Article  Google Scholar 

  10. Morimae, T., Fujii, K.: Blind quantum computation protocol in which Alice only makes measurements. Phys. Rev. A 87, 050301 (2013)

    Article  ADS  Google Scholar 

  11. Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation. In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science, pp. 517–526 (2009)

  12. Morimae, T., Dunjko, V., Kashefi, E.: Ground state blind quantum computation on AKLT states. Quantum Inf. Comput. 15, 200–234 (2015)

    MathSciNet  Google Scholar 

  13. Morimae, T., Fujii, K.: Blind topological measurement-based quantum computation. Nat. Commun. 3, 1036 (2012)

    Article  ADS  Google Scholar 

  14. Morimae, T.: Continuous-variable blind quantum computation. Phys. Rev. Lett. 109, 230502 (2012)

    Article  ADS  Google Scholar 

  15. Barz, S., Kashefi, E., Broadbent, A., Fitzsimons, J.F., Zeilinger, A., Walther, P.: Demonstration of blind quantum computing. Science 335(6066), 303–308 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Sueki, T., Koshiba, T., Morimae, T.: Ancilla-driven universal blind quantum computation. Phys. Rev. A 87, 060301 (2013)

    Article  ADS  Google Scholar 

  17. Dunjko, V., Kashefi, E., Leverrier, A.: Blind quantum computing with weak coherent pulses. Phys. Rev. Lett. 108, 200502 (2012)

    Article  ADS  Google Scholar 

  18. Giovannetti, V., Maccone, L., Morimae, T., Rudolph, T.G.: Efficient universal blind quantum computation. Phys. Rev. Lett. 111, 230501 (2013)

    Article  ADS  Google Scholar 

  19. Mantri, A., P\(\acute{e}\)rez-Delgado, C.A., Fitzsimons, J.F.: Optimal blind quantum computation. Phys. Rev. Lett. 111, 230502 (2013)

  20. Morimae, T., Fujii, K.: Secure entanglement distillation for double-server blind quantum computation. Phys. Rev. Lett. 111, 020502 (2013)

    Article  ADS  Google Scholar 

  21. Li, Q., Chan, W.H., Wu, C., Wen, Z.H.: Triple-server blind quantum computation using entanglement swapping. Phys. Rev. A 89, 040302 (2014)

    Article  ADS  Google Scholar 

  22. Huang, H.L., Zhao, Y.W., Li, T., Li, F.G., Du, Y.T., Fu, X.Q., Zhang, S., Wang, X., Bao, W.S.: Homomorphic encryption experiments on ibm’s cloud quantum computing platform. Front. Phys. 12(1), 120305 (2017)

  23. Sheng, Y.B., Zhou, L.: Deterministic entanglement distillation for secure double-server blind quantum computation. Sci. Rep. 5, 7815 (2015)

    Article  Google Scholar 

  24. Takeuchi, Y., Fujii, K., Ikuta, R., Yamamoto, T., Imoto, N.: Blind quantum computation over a collective-noise channel. Phys. Rev. A 93, 052307 (2016)

    Article  ADS  Google Scholar 

  25. Morimae, T.: Verification for measurement-only blind quantum computing. Phys. Rev. A 89, 060302 (2014)

    Article  ADS  Google Scholar 

  26. Hayashi, M., Morimae, T.: Verifiable measurement-only blind quantum computing with stabilizer testing. Phys. Rev. Lett. 115, 220502 (2015)

    Article  ADS  Google Scholar 

  27. Gheorghiu, A., Kashefi, E., Wallden, P.: Robustness and device independence of verifiable blind quantum computing. New J. Phys. 17, 083040 (2015)

    Article  MATH  ADS  Google Scholar 

  28. Fitzsimons, J.F., Kashefi, E.: Unconditionally verifiable blind quantum computation. Phys. Rev. A 96, 012303 (2017)

    Article  ADS  Google Scholar 

  29. Morimae, T.: Measurement-only verifiable blind quantum computing with quantum input verification. Phys. Rev. A 94, 042301 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  30. Broadbent, A.: How to verify a quantum computation. Theor. Comput. 14(11), 1–37 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gheorghiu, A., Kashefi, E., Wallden, P.: Robustness and device independence of verifiable blind quantum computing. New J. Phys. 17, 083040 (2015)

    Article  MATH  ADS  Google Scholar 

  32. Fitzsimons, J.F.: Private quantum computation: an introduction to blind quantum computing and related protocols. npj Quantum Inf. 3, 1–11 (2017)

    Article  Google Scholar 

  33. Huang, H.L., Zhao, Q., Ma, X.F., Liu, C., Su, Z.E., Wang, X.L., Li, L., Liu, N.L., Sanders, B.C., Lu, C.Y., Pan, J.W.: Experimental blind quantum computing for a classical client. Phys. Rev. Lett. 119, 050503 (2017)

    Article  ADS  Google Scholar 

  34. Sun, Z., Yu, J., Wang, P., Xu, L.L.: Symmetrically private information retrieval based on blind quantum computing. Phys. Rev. A 91, 052303 (2015)

    Article  ADS  Google Scholar 

  35. Huang, H.L., Bao, W.S., Li, T., Li, F.G., Fu, X.Q., Zhang, S., Zhang, H.L., Wang, X.: Universal blind quantum computation for hybrid system. Quantum Inf. Process. 16, 199 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. Marshall, K., Jacobsen, C.S., Sch\(\ddot{a}\)fermeier, C., Gehring, T., Weedbrook, C., Andersen, U.L.: Continuous-variable quantum computing on encrypted data. Nat. Comm. 7, 13795 (2016)

  37. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  38. Bandyopadhyay, S., Ghosh, S., Kar, G.: Locc distinguishability of unilaterally transformable quantum states. New J. Phys. 13, 123013 (2011)

    Article  MATH  ADS  Google Scholar 

  39. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    Article  ADS  Google Scholar 

  40. Lloyd, S.: Universal quantum simulators. Science 273, 1073 (1996)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  41. Monz, T., Schindler, P., Barreiro, J.T., Chwalla, M., Nigg, D., Coish, W.A., Harlander, M., H\(\ddot{a}\)nsel, W., Hennrich, M., Blatt, R.: 14-qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011)

  42. Friis, N., Marty, O.C., Maier, H.C., Holz\(\ddot{a}\)pfel, M., Jurcevic, P., Plenio, M.B., Huber, M., Roos, C., Blatt, R., Lanyon, B.: Observation of entangled states of a fully controlled 20-qubit system. Phys. Rev. X 8, 021012 (2018)

  43. Song, C., Xu, K., Liu, W.X., Yang, C.P., Zheng, S.B., Deng, H., Xie, Q.W., Huang, K.Q., Guo, Q.J., Zhang, L.B., Zhang, P.F., Xu, D., Zheng, D.N., Zhu, X.B., Wang, H., Chen, Y.A., Lu, C.Y., Han, S.Y., Pan, J.W.: 10-qubit entanglement and parallel logic operations with a superconducting circuit. Phys. Rev. Lett. 119, 180511 (2017)

    Article  ADS  Google Scholar 

  44. Wang, X.L., Chen, L.K., Li, W., Huang, H.L., Liu, C., Chen, C., Luo, Y.H., Su, Z.E., Wu, D., Li, Z., Lu, H., Hu, Y., Jiang, X., Peng, C.Z., Li, L., Liu, N.L., Chen, Y.A., Lu, C.Y., Pan, J.W.: Experimental ten-photon entanglement. Phys. Rev. Lett. 117, 210502 (2016)

    Article  ADS  Google Scholar 

  45. Danos, V., Kashefi, E., Panangaden, P.: The measurement calculus. J. ACM 54, 1–8 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  46. Jozsa, R.: An introduction to measurement based quantum computation (2005). arXiv:quant-ph/0508124

  47. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  48. McKague, M.: Interactive proofs for bqp via self-tested graph states. Theor. Comput. 12, 1–42 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  49. Winter, A.: Coding theorem and strong converse for quantum channels. IEEE Trans. Inf. Theory 45, 02481 (1999)

    Article  MathSciNet  Google Scholar 

  50. Wilde, M.M.: From Classical to Quantum Shannon Theory. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  51. Hayashi, M., Hajdusek, M.: Self-guaranteed measurement-based blind quantum computation. Phys. Rev. A 97, 052308 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 62005321).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqian Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

In this part, we show the schematic structures of six-qubit cluster states and eight-qubit cluster states in Figs. 4, 5 and 6. And we also give the form of graph state \(|G\rangle \) in Fig. 7.

In Figs. 4, 5 and 6, a computation starts with the input information in two left qubits, and measurements are performed from left to right. Qubits labeled by \(\alpha _x\), \(\beta _x\), \(\gamma _x\), \(\delta _x\), \(\eta _x\) (\(x=1, 2\)) are measured such that the information for each qubit flows to the right along the lines. In general, each horizontal line represents a single qubit propagation, and each vertical connection represents single qubit interaction.

In Fig. 4, \(\alpha _x\) and \(\beta _x\) are rotation angles in (a). In (b), \(R_z(\alpha _x)\) and \(R_x(\alpha _x)\) are rotations about the Z-axis and X-axis, respectively. \(R_z'(\theta )=HR_z(\theta )\), and it is applicable to Figs. 5 and 6. The lines between qubits represent the controlled-Z which are applied before the computation begins.

Fig. 4
figure 4

Schematic structure of six-qubit cluster states for gates S, T, X, Z, Y, I

In Fig. 5, \(\gamma _x\), \(\delta _x\) and \(\eta _x\) are rotations about the X-axis and Z-axis in (a). Note that extra gates H and \(R_z(-\frac{\pi }{2})\) need to be performed on the above qubit and the below qubit, respectively, to get a gate CNOT. If the cluster state does not contain the final quantum outputs, the operation \(R_z(-\frac{\pi }{2})\) will be naturally corrected by performing projective measurements \(|\pm _{{\eta _t}-\frac{\pi }{2}}\rangle \Leftrightarrow \frac{e^{\frac{i\pi }{4}}}{\sqrt{2}}[|0\rangle \pm e^{i({\eta _t}-\frac{\pi }{2})}|1\rangle ]\).

In Fig. 6, eight-qubits cluster states can also be used to realize single-qubit gates H, S, T, X, Y, Z, I. In this case, Bob needs to perform an undesirable correction operation H on qubits which belong to states \(|LA\rangle \) or traps \(|R_1\rangle \), \(|R_2\rangle \). It is obvious that this increases Bob’s workload and complexity of this protocol. Therefore, we do not use the eight-qubit cluster states to implement gates H, S, T, X, Y, Z, I as far as possible. In the following, we give the structure of graph state \(|G\rangle \) (Fig. 7).

In Fig. 7, the green circles are trap qubits \(|R_1\rangle \) and these traps are randomly attached to the latticed state with a certain rule. In such case, Bob cannot precisely extract the traps from state \(|G\rangle \), so he learns nothing about the true dimension of the latticed state and the positions of the latticed state.

Fig. 5
figure 5

Schematic structure of eight-qubit cluster states for gates H and CNOT

Fig. 6
figure 6

Schematic diagram of eight-qubit cluster states for gates H, S, T, X, Y, Z, I

Fig. 7
figure 7

(Color online) Schematic diagram of \(|G\rangle \), where qubits connected by the solid lines are entangled but unentangled by the dotted lines

Appendix B

The proofs of correctness of X, Y, CNOT are shown in the following.

Proof

We first give the decompositions of gates X, Y, CNOT in Eq. (3).

$$\begin{aligned} \begin{array}{l} \displaystyle X=e^{i\frac{\pi }{2}}HR_z(\pi )H R_z(0),\ Y=e^{-\frac{i\pi }{2}}HR_z(\pi )H R_z(\pi ),\\ \displaystyle CNOT=\left( R_z\left( \frac{\pi }{2}\right) \otimes R_x\left( \frac{\pi }{2}\right) \right) CZ\left( I\otimes R_x\left( -\frac{\pi }{2}\right) \right) CZ. \end{array} \end{aligned}$$
(3)

where \((R_x(\pi )\otimes I)CZ=e^{\frac{i\pi }{2}}CZ(R_x(\pi )\otimes R_z(\pi ))\) and \((Y\otimes I)CZ=CZ(Y\otimes Z)\). \(\square \)

Fig. 8
figure 8

Simplified process of gate X

Figure 8 gives out the simplified process of gate X. For the above qubit, we have \(HR_z(\pi )H R_z(0)=R_x(\pi )\). According to the equation \((R_x(\pi )\otimes I)CZ=e^{\frac{i\pi }{2}}CZ(R_x(\pi )\otimes R_z(\pi ))\), we can move the \(R_x(\pi )\) from the right of the first CZ to the left with auxiliary gate \(R_z(\pi )\) on the below qubit. We set the angles \(\alpha _2=-\pi \), \(\beta _2=0\) and use the equation \((R_z(\theta )\otimes I)CZ=CZ(R_z(\theta )\otimes I)\) to eliminate the influence of \(R_z(\pi )\) to get the circuit (1). Finally, we realize gate X on the above qubit, so does the below qubit.

The simplified process of gate Y can be seen in Fig. 9. By the relationship \(HR_z(\pi )H=R_x(\pi )\) in the above line, we get the circuit (1). Similar to gate X, we get the circuit (2) according to the equations of \((R_x(\pi )\otimes I)CZ=e^{\frac{i\pi }{2}}CZ(R_x(\pi )\otimes R_z(\pi ))\) and \((R_z(\pi )\otimes I)CZ=CZ(R_z(\pi )\otimes I)\). Therefore, we realize gate Y on the above qubit, so does the below qubit.

The simplified process of gate CNOT can be seen in Fig. 10. Through the relationship \(HR_z(0)H\) \(R_z(0)=I\), the above line is I gate, so we get the circuit (1). By the relationship \(HR_z(-\frac{\pi }{2})H=R_x(-\frac{\pi }{2})\) and \(R_z(-\frac{\pi }{2})H=R_x(\frac{\pi }{2})R_z(\frac{\pi }{2})\), we get the circuit (2). Via the relationship \((R_z(\frac{\pi }{2})\otimes R_x(\frac{\pi }{2}))CZ(I\otimes R_x(-\frac{\pi }{2}))CZ=CNOT\), we get the gate CNOT after correcting H and \(R_z(-\frac{\pi }{2})\).\(\square \)

Fig. 9
figure 9

Simplified process of gate Y

Fig. 10
figure 10

Simplified process of gate CNOT

Appendix C

Here, we give a detailed calculation process for the range of \(\epsilon \). Since \(\epsilon \geqslant \frac{2}{3}\cdot \frac{1}{1-q}\geqslant \frac{2}{3}\cdot \frac{1+3\epsilon -6\sqrt{\epsilon }}{1-6\sqrt{\epsilon }}\), we get \(18\epsilon \sqrt{\epsilon }+3\epsilon -12\sqrt{\epsilon }+2\leqslant 0\). Suppose a function \(f(x)=18x\sqrt{x}+3x-12\sqrt{x}+2\), the first-order derivative is \(f'(x)=27\sqrt{x}+3-\frac{6}{\sqrt{x}}\). When \(f'(x)\) equals to 0, the solution is \(x\approx 0.175\), so we obtain \(f(0.175)=-1.1772\). The second-order derivative of f(x) is \(f^{''}(x)=\frac{27}{2\sqrt{x}}+\frac{3}{x\sqrt{x}}\), and we can know \(f^{''}(0.175)>0\). According to the sufficient conditions of extreme value, \(f(0.175)=-1.1772\) is the minimum value. When \(f(x)=0\), we get \(x_1\approx 0.035, x_2\approx 0.384\) calculated by MATLAB. By analyzing the relationship of \(x, f'(x)\) and f(x), we get the conclusion: The function f(x) is decreasing when \(x\in [0,0.175)\), while it is increasing when \(x\in (0.175,1]\). It is easy to get \(x\in [0.035, 0.384]\) when \(f(x)\leqslant 0\). Therefore, the range of \(\epsilon \) is [0.035, 0.384].

Moreover, for \(q\geqslant \frac{3\epsilon }{1+3\epsilon -6\sqrt{\varepsilon }}\), we verify that the range of q is [0, 1]. Suppose a function \(g(y)=\frac{3y}{1+3y-6\sqrt{y}}\), we compute the first-order derivative \(g'(y)=\frac{3-9\sqrt{y}}{(1+3y-6\sqrt{y})^2}\). The function g(y) is increasing if \(g'(y)=\frac{3-9\sqrt{y}}{(1+3y-6\sqrt{y})^2}\geqslant 0\) with \(y\in [0,\frac{1}{9}]\). Otherwise, g(y) is decreasing with \(y> \frac{1}{9}\). Naturally, we obtain \(g(y)_{max}=g(\frac{1}{9})=-\frac{1}{2}\). For \(\epsilon \in [0.035, 0.384]\), it is obvious that \(\frac{1}{9}\in [0.035, 0.384].\) Hence, it is reasonable for \(q\in [0,1].\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X. Measurement-based universal blind quantum computation with minor resources. Quantum Inf Process 21, 14 (2022). https://doi.org/10.1007/s11128-021-03365-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03365-w

Keywords

Navigation