Skip to main content
Log in

Multi-party controlled cyclic hybrid quantum communication protocol in noisy environment

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

With the rapid development of quantum networks, cyclic quantum information transmission provides a good solution for multi-party quantum communication. In this paper, by integrating the ideas of remote preparation with quantum teleportation, a neoteric multi-party controlled cyclic hybrid quantum communication protocol with \(n(n\ge 3)\) observers is designed. In the protocol, by sharing an entangled quantum channel, each of these observers can simultaneously send two completely disparate arbitrary single-qubit quantum states to her adjacent observers under the assistance of the controller. It can realize bidirectional and cyclic transmission of any single-qubit states between observers. The observers only need to employ simple measurements and basic local unitary operations to implement the communication task, and our scheme can achieve a unit success probability. Furthermore, we provide a four-party controlled cyclic hybrid quantum communication scheme with three observers, and we also take into account the two kinds of important decoherent noises (amplitude damping and phase damping noises) that affect the proposed four-party communication protocol. Finally, by calculating the fidelity, it is discovered that the fidelity of the output state has something to do with the parameters of the initial states as well as the noise decoherence rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Lo, H.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62(1), 012313 (2000)

    Article  ADS  Google Scholar 

  3. Chen, X., Sun, Y., Xu, G., Yang, Y.: Quantum homomorphic encryption scheme with flexible number of evaluator based on (k, n)-threshold quantum state sharing. Inf. Sci. 501, 172–181 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Xu, G., Xiao, K., Li, Z., Niu, X., Ryan, M.: Controlled secure direct communication protocol via the three-qubit partially entangled set of states. Comput. Mater. Contin. 58(3), 809–827 (2019)

    Google Scholar 

  5. Xu, G., Cao, Y., Xu, S., Xiao, K., Liu, X.: A novel post-quantum blind signature for log system in blockchain. Comput. Syst. Sci. Eng. 41(3), 945–958 (2022)

    Article  Google Scholar 

  6. Pirandola, S.: End-to-end capacities of a quantum communication network. Commun. Phys. 2(1), 51 (2019)

    Article  Google Scholar 

  7. Huelga, S.F., Vaccaro, J.A., Chefles, A., Plenio, M.B.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63(4), 042303 (2001)

    Article  ADS  MATH  Google Scholar 

  8. Cao, T.B., Nguyen, B.A.: Deterministic controlled bidirectional remote state preparation. Adv. Nat. Sci. Nanosci. Nanotechnol. 5(1), 015003 (2013)

    Article  Google Scholar 

  9. Zha, X., Zou, Z., Qi, J., Song, H.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52(6), 1740–1744 (2013)

    Article  MathSciNet  Google Scholar 

  10. Li, Y., Jin, X.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15(2), 929–945 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Sang, M.: Bidirectional quantum teleportation by using five-qubit cluster state. Int. J. Theor. Phys. 55(3), 1333–1335 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, D., Zha, X., Duan, Y., Yang, Y.: Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state. Quantum Inf. Process. 15(5), 2169–2179 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Chen, X., Sun, Y., Xu, G., Jia, H., Qu, Z.: Controlled bidirectional remote preparation of three-qubit state. Quantum Inf. Process. 16(10), 244 (2017)

    Article  ADS  MATH  Google Scholar 

  14. Sun, Y., Chen, X., Xu, G., Yuan, K., Yang, Y.: Asymmetric controlled bidirectional remote preparation of two-and three-qubit equatorial state. Sci. Rep. 9(1), 2081 (2019)

    Article  ADS  Google Scholar 

  15. Ma, S., Gong, L.: Deterministic bidirectional controlled remote preparation without information splitting. Quantum Inf. Process. 19(8), 255 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  16. He, X., Liu, M., Yang, C.: Controlled teleportation with the control of two groups of agents via entanglement. Quantum Inf. Process. 14(3), 1055–1068 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Ma, S., Gao, C., Zhang, P., Qu, Z.: Deterministic remote preparation via the brown state. Quantum Inf. Process. 16(4), 93 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Sang, Z.: Bidirectional controlled quantum information transmission by using a five-qubit cluster state. Int. J. Theor. Phys. 56(11), 3400–3404 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wu, H., Zha, X., Yang, Y.: Controlled bidirectional hybrid of remote state preparation and quantum teleportation via seven-qubit entangled state. Int. J. Theor. Phys. 57(1), 28–35 (2018)

    Article  MATH  Google Scholar 

  20. Ma, P., Chen, G., Li, X., Zhan, Y.: Schemes for hybrid bidirectional controlled quantum communication via multi-qubit entangled states. Int. J. Theor. Phys. 57(2), 443–452 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fang, S., Jiang, M.: A novel scheme for bidirectional and hybrid quantum information transmission via a seven-qubit state. Int. J. Theor. Phys. 57(2), 523–532 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gong, L., Li, X., Ma, S.: Bidirectional hybrid controlled quantum communication under noisy environment. Int. J. Theor. Phys. 58(11), 3734–3745 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen, Y., Du, J., Liu, S., Wang, X.: Cyclic quantum teleportation. Quantum Inf. Process. 16(8), 201 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Sang, M., Nie, Y.: Deterministic tripartite controlled remote state preparation. Int. J. Theor. Phys. 56(10), 3092–3095 (2017)

    Article  MATH  Google Scholar 

  25. Sang, Z.: Cyclic controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 57(12), 3835–3838 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shao, Z., Long, Y.: Circular controlled quantum teleportation by a genuine seven-qubit entangled state. Int. J. Theor. Phys. 58(6), 1957–1967 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, Y., Qiao, Y., Sang, M., Nie, Y.: Controlled cyclic quantum teleportation of an arbitrary two-qubit entangled state by using a ten-qubit entangled state. Int. J. Theor. Phys. 58(5), 1541–1545 (2019)

    Article  MATH  Google Scholar 

  28. Shi, J., Zhang, X., Zhu, Y.: Cyclic controlled quantum teleportation using three-dimensional hyper-entangled state. Int. J. Theor. Phys. 58(9), 3036–3048 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wu, F., Bai, M., Zhang, Y., Liu, R., Mo, Z.: Cyclic quantum teleportation of an unknown multi-particle high-dimension state. Mod. Phys. Lett. B 34(05), 2050073 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  30. Wang, M., Yang, C., Mousoli, R.: Controlled cyclic remote state preparation of arbitrary qubit states. CMC Comput. Mater. Contin. 55(2), 321–329 (2018)

    Google Scholar 

  31. Zhang, C., Bai, M., Zhou, S.: Cyclic joint remote state preparation in noisy environment. Quantum Inf. Process. 17(6), 146 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Sang, Z.: Cyclic controlled joint remote state preparation by using a ten-qubit entangled state. Int. J. Theor. Phys. 58(1), 255–260 (2019)

    Article  MATH  Google Scholar 

  33. Zhao, N., Wu, T., Yu, Y., Pei, C.: A scheme for controlled cyclic asymmetric remote state preparation in noisy environment. Appl. Sci. 11(4), 1405 (2021)

    Article  Google Scholar 

  34. Sun, Y., Chen, X., Jun, S., Song, H., Hong, H.: Cyclic preparation of two-qubit state in two noisy environments. Quantum Inf. Process. 21(1), 40 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  35. Zhou, R., Qian, C., Lan, H.: Cyclic and bidirectional quantum teleportation via pseudo multi-qubit states. IEEE Access 7, 42445–42449 (2019)

    Article  Google Scholar 

  36. Jiang, S., Zhou, R., Xu, R., Luo, G.: Cyclic hybrid double-channel quantum communication via bell-state and GHZ-state in noisy environments. IEEE Access 7, 80530–80541 (2019)

    Article  Google Scholar 

  37. Sun, S., Zhang, H.: Quantum double-direction cyclic controlled communication via a thirteen-qubit entangled state. Quantum Inf. Process. 19(4), 120 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  38. Sun, S., Zhang, H.: Double-direction quantum cyclic controlled remote state preparation of two-qubit states. Quantum Inf. Process. 20(6), 211 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  39. Zhou, N., Zhu, K., Zou, X.: Multi-party semi-quantum key distribution protocol with four-particle cluster states. Ann. Phys. 531(8), 1800520 (2019)

    Article  MathSciNet  Google Scholar 

  40. Ma, S., Wang, N.: Hierarchical remote preparation of an arbitrary two-qubit state with multiparty. Quantum Inf. Process. 20(8), 276 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  41. Li, L., Li, Z.: A verifiable multi-party quantum key distribution protocol based on repetitive codes. Inf. Sci. 585, 232–245 (2022)

    Article  Google Scholar 

  42. Xu, G., Chen, X., Li, J., Wang, C., Yang, Y.: Network coding for quantum cooperative multicast. Quantum Inf. Process. 14(11), 4297–4322 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Li, Z., Xu, G., Chen, X., Qu, Z., Niu, X.: Efficient quantum state transmission via perfect quantum network coding. Sci. China Inf. Sci. 62(1), 012501 (2019)

    Article  Google Scholar 

  44. He, M., Ma, S., Kang, K.: A universal protocol for bidirectional controlled teleportation with network coding. Commun. Theor. Phys. 73(10), 105104 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  45. Pan, X., Xu, G., Li, Z., Chen, X., Yang, Y.: Quantum network coding without loss of information. Quantum Inf. Process. 20(2), 65 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  46. Wang, N., Ma, S., Li, X.: Hierarchical controlled quantum communication via the \(\chi \) state under noisy environment. Mod. Phys. Lett. A 35(37), 2050306 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Liang, X.: Classical information capacities of some single qubit quantum noisy channels. Commun. Theor. Phys. 39(5), 537 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  48. Wang, M., Qu, Z., Wang, W., Chen, J.: Effect of noise on deterministic joint remote preparation of an arbitrary two-qubit state. Quantum Inf. Process. 16(5), 140 (2017)

    Article  ADS  MATH  Google Scholar 

  49. Yuan, H., Liu, Y., Zhang, W., Zhang, Z.: Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J. Phys. B At. Mol. Opt. Phys. 41(14), 145506 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Open Fund of Advanced Cryptography and System Security Key Laboratory of Sichuan Province (Grant No. SKLACSS-202101), NSFC (Grant No. 62271070), the Fundamental Research Funds for Beijing Municipal Commission of Education, Beijing Urban Governance Research Base of North China University of Technology, and BUPT Excellent Ph.D. Students Foundation (Grant No. CX2021123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Bo Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, L., Chen, XB., Xu, G. et al. Multi-party controlled cyclic hybrid quantum communication protocol in noisy environment. Quantum Inf Process 21, 375 (2022). https://doi.org/10.1007/s11128-022-03725-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03725-0

Keywords

Navigation