Skip to main content
Log in

Improved semi-quantum key distribution with two almost-classical users

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Semi-quantum key distribution (SQKD) protocols attempt to establish a shared secret key between users, secure against computationally unbounded adversaries. Unlike standard quantum key distribution protocols, SQKD protocols contain at least one user who is limited in their quantum abilities and is almost “classical” in nature. In this paper, we revisit a mediated semi-quantum key distribution protocol, introduced by Massa et al. (Experimental quantum cryptography with classical users, 2019. arXiv preprint arXiv:1908.01780), where users need only the ability to detect a qubit, or reflect a qubit; they do not need to perform any other basis measurement; nor do they need to prepare quantum signals. Users require the services of a quantum server which may be controlled by the adversary. In this paper, we show how this protocol may be extended to improve its efficiency and also its noise tolerance. We discuss an extension which allows more communication rounds to be directly usable; we analyze the key-rate of this extension in the asymptotic scenario for a particular class of attacks and compare with prior work. Finally, we evaluate the protocol’s performance in a variety of lossy and noisy channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99, 140501 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  2. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A 79, 032341 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  3. Zou, X., Qiu, D., Li, L., Wu, L., Li, L.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79(5), 052312 (2009)

    Article  ADS  Google Scholar 

  4. He, J., Li, Q., Wu, C., Chan, W.H., Zhang, S.: Measurement-device-independent semiquantum key distribution. Int. J. Quantum Inf. 16(02), 1850012 (2018)

    Article  Google Scholar 

  5. Amer, O., Krawec, W.O.: Semiquantum key distribution with high quantum noise tolerance. Phys. Rev. A 100(2), 022319 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  6. Vlachou, C., Krawec, W., Mateus, P., Paunković, N., Souto, A.: Quantum key distribution with quantum walks. Quantum Inf. Process. 17(11), 1–37 (2018)

    Article  MathSciNet  Google Scholar 

  7. Iqbal, H., Krawec, W.O.: High-dimensional semiquantum cryptography. IEEE Trans. Quantum Eng. 1, 1–17 (2020)

    Article  Google Scholar 

  8. Boyer, M., Katz, M., Liss, R., Mor, T.: Experimentally feasible protocol for semiquantum key distribution. Phys. Rev. A 96(6), 062335 (2017)

    Article  ADS  Google Scholar 

  9. Krawec, W.O.: Practical security of semi-quantum key distribution. In: Quantum Information Science, Sensing, and Computation X, vol. 10660, pp. 1066009. International Society for Optics and Photonics (2018)

  10. Silva, M., Faleiro, R., Mateus, P.: Semi-device-independent quantum key distribution based on a coherence equality (2021). arXiv preprint arXiv:2103.06829

  11. Chongqiang, Y., Jian, L., Xiubo, C., Yuan, T., Yanyan, H.: An efficient semi-quantum key distribution protocol and its security proof. IEEE Commun. Lett. 26, 1226–1230 (2022)

    Article  Google Scholar 

  12. Li, Q., Chan, W.H., Long, D.-Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303 (2010)

    Article  ADS  Google Scholar 

  13. Lin, J., Yang, C.-W., Tsai, C.-W., Hwang, T.: Intercept-resend attacks on semi-quantum secret sharing and the improvements. Int. J. Theor. Phys. 52(1), 156–162 (2013)

    Article  MathSciNet  Google Scholar 

  14. Wang, J., Zhang, S., Zhang, Q., Tang, C.-J.: Semiquantum secret sharing using two-particle entangled state. Int. J. Quantum Inf. 10(05), 1250050 (2012)

    Article  MathSciNet  Google Scholar 

  15. Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57(9), 1696–1702 (2014)

    Article  ADS  Google Scholar 

  16. Gu, J., Lin, P., Hwang, T.: Double C-NOT attack and counterattack on ‘three-step semi-quantum secure direct communication protocol’. Quantum Inf. Process. 17(7), 1–8 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  17. Xie, C., Li, L., Situ, H., He, J.: Semi-quantum secure direct communication scheme based on bell states. Int. J. Theor. Phys. 57(6), 1881–1887 (2018)

    Article  MathSciNet  Google Scholar 

  18. Sun, Y., Yan, L., Chang, Y., Zhang, S., Shao, T., Zhang, Y.: Two semi-quantum secure direct communication protocols based on bell states. Mod. Phys. Lett. A 34(01), 1950004 (2019)

    Article  ADS  Google Scholar 

  19. Rong, Z., Qiu, D., Mateus, P., Zou, X.: Mediated semi-quantum secure direct communication. Quantum Inf. Process. 20(2), 1–13 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  20. Thapliyal, K., Sharma, R.D., Pathak, A.: Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment. Int. J. Quantum Inf. 16(05), 1850047 (2018)

    Article  MathSciNet  Google Scholar 

  21. Chongqiang, Y., Jian, L., Xiubo, C., Yuan, T.: Efficient semi-quantum private comparison without using entanglement resource and pre-shared key. Quantum Inf. Process. 20(8), 1–19 (2021)

    Article  MathSciNet  Google Scholar 

  22. Wen, X.-J., Zhao, X.-Q., Gong, L.-H., Zhou, N.-R.: A semi-quantum authentication protocol for message and identity. Laser Phys. Lett. 16(7), 075206 (2019)

    Article  ADS  Google Scholar 

  23. Zhou, N.-R., Zhu, K.-N., Bi, W., Gong, L.-H.: Semi-quantum identification. Quantum Inf. Process. 18(6), 1–17 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  24. Massa, F., Yadav, P., Moqanaki, A., Krawec, W.O., Mateus, P., Paunković, N., Souto, A., Walther, P.: Experimental quantum cryptography with classical users (2019). arXiv preprint arXiv:1908.01780

  25. Gurevich, P., Orenstein, M., Mor, T.: Experimental Quantum Key Distribution with Clasical Alice. PhD thesis, Computer Science Department, Technion (2013)

  26. Iqbal, H., Krawec, W.O.: Semi-quantum cryptography. Quantum Inf. Process. 19(3), 1–52 (2020)

    Article  MathSciNet  Google Scholar 

  27. Pirandola, S., Andersen, U.L., Banchi, L., Berta, M., Bunandar, D., Colbeck, R., Englund, D., Gehring, T., Lupo, C., Ottaviani, C., et al.: Advances in quantum cryptography. Adv. Opt. Photon. 12(4), 1012–1236 (2020)

    Article  Google Scholar 

  28. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009)

    Article  ADS  Google Scholar 

  29. Amer, O., Garg, V., Krawec, W.O.: An introduction to practical quantum key distribution. IEEE Aerosp. Electron. Syst. Mag. 36(3), 30–55 (2021)

    Article  Google Scholar 

  30. Krawec, W.O.: Mediated semiquantum key distribution. Phys. Rev. A 91(3), 032323 (2015)

    Article  ADS  Google Scholar 

  31. Devetak, I., Winter, A.: Distillation of secret key and entanglement from quantum states. Proc. R. Soc. A Math. Phys. Eng. Sci. 461(2053), 207–235 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Renner, R., Gisin, N., Kraus, B.: Information-theoretic security proof for quantum-key-distribution protocols. Phys. Rev. A 72, 012332 (2005)

    Article  ADS  Google Scholar 

  33. Krawec, W.O.: Quantum key distribution with mismatched measurements over arbitrary channels. Quantum Inf. Comput. 17(3 and 4), 209–241 (2017)

    MathSciNet  Google Scholar 

  34. Krawec, W.O.: Multi-mediated semi-quantum key distribution. In: 2019 IEEE Globecom Workshops (GC Wkshps), pp. 1–6. IEEE (2019)

  35. Davies, E.B., Lewis, J.T.: An operational approach to quantum probability. Commun. Math. Phys. 17(3), 239–260 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  36. Wilde, M.M.: From classical to quantum Shannon theory (2011). arXiv preprint arXiv:1106.1445

  37. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441 (2000)

    Article  ADS  Google Scholar 

  38. Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  39. Lo, H.-K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  40. Wang, X.-B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  41. Lim, C.C.W., Curty, M., Walenta, N., Xu, F., Zbinden, H.: Concise security bounds for practical decoy-state quantum key distribution. Phys. Rev. A 89(2), 022307 (2014)

    Article  ADS  Google Scholar 

  42. Guskind, J., Krawec, W.O.: Mediated semi-quantum key distribution with improved efficiency (2021). arXiv preprint arXiv:2111.01627

  43. Maurer, U.M.: Secret key agreement by public discussion from common information. IEEE Trans. Inf. Theory 39(3), 733–742 (1993)

    Article  MathSciNet  Google Scholar 

  44. Bae, J., Acín, A.: Key distillation from quantum channels using two-way communication protocols. Phys. Rev. A 75(1), 012334 (2007)

    Article  ADS  Google Scholar 

  45. Chau, H.F.: Practical scheme to share a secret key through a quantum channel with a 27.6% bit error rate. Phys. Rev. A 66(6), 060302 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

WOK would like to acknowledge support from the National Science Foundation under Grant Number 1812070. SM would like to acknowledge the support of National Science Foundation grant number CNS-1950600, which supported her during a summer REU at the University of Connecticut.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter O. Krawec.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

A.1 Parameter estimation

In this appendix, we determine bounds on the needed inner products (required to evaluate Eq. 14) by considering various, observable, events such as the probability of the server sending the message “1” given that both parties choose \(\texttt {Reflect}\) (this should be small for instance). This can be done for arbitrary channels; however as discussed in the text, we derive expressions for a symmetric depolarization attack, a common approach in QKD security proofs. Note that our security proof does not require this as an assumption—it is only done in order to evaluate the performance on a standard channel scenario. Our steps below, however, may be followed for any observed channel. Under these evaluation conditions, we may parameterize the channel statistics as follows: \(\phi \) will be the phase error of the channel; \(p_l\) is the probability of loss in one direction (the server to users and the users to the server); and \(p_d\) is the dark count rate of the server’s detectors.

Recall the density operator describing one round of the protocol (Eq. 9) which we copy here:

$$\begin{aligned} \rho _{ABE} =\,&\frac{1}{N}[{\mathbf {00}}]_{AB}\otimes ( [{\mathbf {1, t_1,}} {\varvec{\nu }}_{{\mathbf {0}}}] + [{\mathbf {0, t_0, 0, s_0}}] + [{\mathbf {0,t_0,1,s_1}}])\nonumber \\&+\frac{1}{N}[{\mathbf {11}}]_{AB}\otimes ( [{\mathbf {1, s_1,}} {\varvec{\nu }}_{{\mathbf {0}}}] + [{\mathbf {0, s_0, 0, t_0}}] + [{\mathbf {0,s_0,1,t_1}}])\nonumber \\&+\frac{1}{N}[{\mathbf {01}}]_{AB}\otimes ( [{\mathbf {1,r_1,}}{\varvec{\nu }}_{{\mathbf {0}}}] + [{\mathbf {0,r_0,0,g_0}}] + [{\mathbf {0,r_0,1,g_1}}])\nonumber \\&+\frac{1}{N}[{\mathbf {10}}]_{AB}\otimes ( [{\mathbf {1,g_1,}}{\varvec{\nu }}_{{\mathbf {0}}}] + [{\mathbf {0,g_0,0,r_0}}] + [{\mathbf {0,g_0,1,r_1}}]) \end{aligned}$$
(15)

We begin by considering \({\mathrm{Pr}}(C = 1 \text { }|\text { }A=B=\texttt {Reflect}) = P_{1|RR}\) which is the probability that conditioning on both Alice and Bob choosing \(\texttt {Reflect}\), the server sends the message 1. It is clear, from the analysis in Sect. 4 and the state \(\rho _{ABE}\), that this is \(P_{1|RR} = {\langle r_1|r_1\rangle }\). Under our symmetric attack scenario, we set this to \(P_{1|RR} = \frac{p_lp_d}{2} + (1-p_l)\left( \frac{p_lp_d}{2} + (1-p_l)\phi \right) \). Similarly, we find the following:

$$\begin{aligned} P_{1|RR}&= {\langle r_1|r_1\rangle } = \frac{p_lp_d}{2} + (1-p_l)\left( \frac{p_lp_d}{2} + (1-p_l)\phi \right) \\ P_{0|RR}&= {\langle r_0|r_0\rangle } = \frac{p_lp_d}{2} + (1-p_l)\left( \frac{p_lp_d}{2} + (1-p_l)(1-\phi )\right) \\\\ P_{1|MR}&= {\langle s_1|s_1\rangle } = \frac{p_lp_d}{2} + \frac{1-p_l}{2}\left( \frac{p_lp_d}{2} + \frac{1-p_l}{2}\right) \\ P_{0|MR}&= {\langle s_0|s_0\rangle } = \frac{p_lp_d}{2} + \frac{1-p_l}{2}\left( \frac{p_lp_d}{2} + \frac{1-p_l}{2}\right) \\\\ P_{1|RM}&= {\langle t_1|t_1\rangle } = \frac{p_lp_d}{2} + \frac{1-p_l}{2}\left( \frac{p_lp_d}{2} + \frac{1-p_l}{2}\right) \\ P_{0|RM}&= {\langle t_0|t_0\rangle } = \frac{p_lp_d}{2} + \frac{1-p_l}{2}\left( \frac{p_lp_d}{2} + \frac{1-p_l}{2}\right) \\\\ P_{1|MM}&= {\langle g_1|g_1\rangle } = \frac{p_lp_d}{2}\\ P_{0|MM}&= {\langle g_0|g_0\rangle } = \frac{p_lp_d}{2} \end{aligned}$$

Note that, in the above, we are defining \(P_{i|RM}=P_{i|MR}\) to be the probability of the server sending message i and the measuring party not detecting the photon. These let us easily compute N using Eq. 10 and the above.

It is also clear that the values of \(\alpha \), \(\beta \), and \(\gamma \) may be observed based on Alice and Bob’s measurements. Namely, \(|\alpha |^2\) is the probability that conditioning on both parties choosing \(\texttt {Measure}\) that Alice detects the photon. Similar observations may be made for \(|\beta |^2\), while \(|\gamma |^2\) is the probability that neither party detects a photon. Thus, these are:

$$\begin{aligned} |\alpha |^2 = |\beta |^2 = \frac{1-p_l}{2}; |\gamma |^2 = p_l, \end{aligned}$$

Next, we bound \(|{\langle s_1|t_1\rangle }|\) and \(|{\langle s_0|t_0\rangle }|\). From Eq. 8, we have:

$$\begin{aligned} {\langle r_1|r_1\rangle }&=\alpha ^2{\langle e_1|e_1\rangle }+\beta ^2 {\langle f_1|f_1\rangle }+\gamma ^2 {\langle g_1|g_1\rangle }\\&\quad +2\alpha \beta {\mathrm{Re}}{\langle e_1|f_1\rangle }+ 2\beta \gamma {\mathrm{Re}}{\langle f_1|g_1\rangle }+2\gamma \alpha {\mathrm{Re}}{\langle g_1|e_1\rangle } \end{aligned}$$

Thus,

$$\begin{aligned} \alpha \beta {\mathrm{Re}}{\langle e_1|f_1\rangle }&=\frac{1}{2}({\langle r_1|r_1\rangle }-\alpha ^2{\langle e_1|e_1\rangle }-\beta ^2 {\langle f_1|f_1\rangle }-\gamma ^2{\langle g_1|g_1\rangle }\nonumber \\&\quad -2\beta \gamma {\mathrm{Re}}{\langle f_1|g_1\rangle }-2\gamma \alpha {\mathrm{Re}}{\langle g_1|e_1\rangle })\nonumber \\&=\frac{1}{2}({\langle r_1|r_1\rangle }-\alpha ^2{\langle e_1|e_1\rangle }-\beta ^2 {\langle f_1|f_1\rangle }-\gamma ^2{\langle g_1|g_1\rangle })\nonumber \\&\quad -\beta \gamma {\mathrm{Re}}{\langle f_1|g_1\rangle }-\gamma \alpha {\mathrm{Re}}{\langle g_1|e_1\rangle } \end{aligned}$$
(16)

Now, we can write \({\mathrm{Re}}{\langle s_1|t_1\rangle }\) as:

$$\begin{aligned} {\mathrm{Re}}{\langle s_1|t_1\rangle }= \alpha \beta {\mathrm{Re}}{\langle f_1|e_1\rangle }+\beta \gamma {\mathrm{Re}}{\langle f_1|g_1\rangle }+\alpha \gamma {\mathrm{Re}}{\langle g_1|e_1\rangle }+\gamma ^2 {\langle g_1|g_1\rangle } \end{aligned}$$

By substituting in Eq. 16 and noting that \({\mathrm{Re}}{\langle e_1|f_1\rangle } = {\mathrm{Re}}{\langle f_1|e_1\rangle }\), we have:

$$\begin{aligned} {\mathrm{Re}}{\langle s_1|t_1\rangle }&=\frac{1}{2}({\langle r_1|r_1\rangle }-\alpha ^2{\langle e_1|e_1\rangle }-\beta ^2 {\langle f_1|f_1\rangle }-\gamma ^2{\langle g_1|g_1\rangle })\nonumber \\&\quad -\beta \gamma {\mathrm{Re}}{\langle f_1|g_1\rangle }-\gamma \alpha {\mathrm{Re}}{\langle g_1|e_1\rangle }+\beta \gamma {\mathrm{Re}}{\langle f_1|g_1\rangle }+\alpha \gamma {\mathrm{Re}}{\langle g_1|e_1\rangle }+\gamma ^2 {\langle g_1|g_1\rangle }\nonumber \\&=\frac{1}{2} {\langle r_1|r_1\rangle }-\frac{1}{2}\alpha ^2{\langle e_1|e_1\rangle }-\frac{1}{2}\beta ^2 {\langle f_1|f_1\rangle }+\frac{1}{2}\gamma ^2{\langle g_1|g_1\rangle } \end{aligned}$$
(17)

Next we may find an expression for \(\alpha ^2{\langle e_1|e_1\rangle }\) by looking at \({\langle t_1|t_1\rangle }\) (which is an observable quantity as discussed above, namely \(P_{1|RM}\)):

$$\begin{aligned}&{\langle t_1| t_1\rangle }= \alpha ^2 {\langle e_1 |e_1\rangle } + \gamma ^2 {\langle g_1 |g_1\rangle } + 2 \alpha \gamma {\mathrm{Re}}{\langle e_1 |g_1\rangle } \\&\Longrightarrow \alpha ^2 {\langle e_1 |e_1\rangle }= {\langle t_1| t_1\rangle }- \gamma ^2 {\langle g_1| g_1\rangle } - 2 \alpha \gamma {\mathrm{Re}} {\langle e_1| g_1\rangle } \end{aligned}$$

Of course \({\langle t_1 |t_1\rangle }\) is an observable probability for Alice and Bob and, later, we may use Cauchy–Schwarz to bound \(|{\langle e_1|g_1\rangle }|\) thus allowing them to bound \(\alpha ^2{\langle e_1|e_1\rangle }\) used in the expansion of \({\langle s_1|t_1\rangle }\). Similarly, we find:

$$\begin{aligned}&{\langle s_1| s_1\rangle }= \beta ^2 {\langle f_1| f_1\rangle } + \gamma ^2 {\langle g_1|g_1\rangle } + 2 \beta \gamma {\mathrm{Re}} {\langle f_1|g_1\rangle } \\&\Longrightarrow \beta ^2 {\langle f_1|f_1\rangle }= {\langle s_1|s_1\rangle }- \gamma ^2 {\langle g_1|g_1\rangle } - 2 \beta \gamma {\mathrm{Re}} {\langle f_1|g_1\rangle } \end{aligned}$$

Combining this into Eq. 17 and using the (reverse) triangle inequality yields:

$$\begin{aligned} |{\langle s_1|t_1\rangle }|&\ge |{\mathrm{Re}}{\langle s_1|t_1\rangle }|= \frac{1}{2}\left| {\langle t_1|t_1\rangle } + {\langle s_1|s_1\rangle } - {\langle r_1|r_1\rangle } - 3{\langle g_1|g_1\rangle }- 2\alpha \gamma {\mathrm{Re}}{\langle e_1|g_1\rangle }\right. \nonumber \\&\quad \left. - 2\beta \gamma {\mathrm{Re}}{\langle f_1|g_1\rangle }\right| \nonumber \\&\ge \frac{{\langle t_1|t_1\rangle } + {\langle s_1|s_1\rangle } - {\langle r_1|r_1\rangle }}{2} \nonumber \\&\quad - \frac{3}{2}{\langle g_1|g_1\rangle } - (\alpha \gamma + \beta \gamma )\sqrt{{\langle g_1|g_1\rangle }}, \end{aligned}$$
(18)

where, for the last inequality, we used the fact that \(|{\langle e_1|g_1\rangle }| \le \sqrt{{\langle e_1|e_1\rangle }{\langle g_1|g_1\rangle }} \le \sqrt{{\langle g_1|g_1\rangle }}\). (Similarly for \({\langle f_1|g_1\rangle }\).) Similarly we may bound:

$$\begin{aligned} |{\langle s_0|t_0\rangle }|&\ge \frac{1}{2}\left| {\langle t_1|t_1\rangle } + {\langle s_1|s_1\rangle } - {\langle r_1|r_1\rangle } - 3{\langle g_1|g_1\rangle } - 2\alpha \gamma {\mathrm{Re}}{\langle e_1|g_1\rangle } - 2\beta \gamma {\mathrm{Re}}{\langle f_1|g_1\rangle }\right| \end{aligned}$$
(19)
$$\begin{aligned}&\ge \frac{{\langle t_0|t_0\rangle } + {\langle s_0|s_0\rangle } - {\langle r_1|r_1\rangle }}{2} - \frac{3}{2}{\langle g_1|g_1\rangle } - (\alpha \gamma + \beta \gamma )\sqrt{{\langle g_1|g_1\rangle }}. \end{aligned}$$
(20)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutreja, S., Krawec, W.O. Improved semi-quantum key distribution with two almost-classical users. Quantum Inf Process 21, 319 (2022). https://doi.org/10.1007/s11128-022-03663-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03663-x

Keywords

Navigation