Skip to main content
Log in

Dynamics of entropy and information of time-dependent quantum systems: exact results

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Dynamical aspects of information-theoretic and entropic measures of quantum systems are studied. First, we show that for the time-dependent harmonic oscillator, as well as for the charged particle in certain time-varying electromagnetic fields, the increase of the entropy and dynamics of the Fisher information can be directly described and related. To illustrate these results, we have considered several examples for which all the relations take the elementary form. Moreover, we show that the integrals of (geodesic) motion associated with some conformal Killing vectors lead to the Ermakov–Lewis invariants for the considered electromagnetic fields. Next, we explicitly work out the dynamics of the entanglement entropy of the oscillators coupled by a continuous time-dependent parameter as well as we analyse some aspects of quantum-classical transition (in particular decoherence). Finally, we study in some detail the behaviour of quantum quenches (in the presence of the critical points) for the case of mutually non-interacting non-relativistic fermions in a harmonic trap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

All data generated or analysed during this study are included in this article.

References

  1. Shannon, C., Weaver, W.: Math. Theory Commun. The University of Illinois Press, Urbana, Illinois (1949)

    Google Scholar 

  2. Rényi, A.: “On measures of entropy and information’’. Proc. Fourth Berkeley Symp. Math. Stat. Probab. 1, 547 (1961)

    MathSciNet  MATH  Google Scholar 

  3. Fisher, R.: “Theory of statistical estimation’’. Proc. Cambridge Philos. Soc. 22, 700 (1925)

    Article  ADS  MATH  Google Scholar 

  4. Białynicki-Birula, I., Mycielski, J.: “Uncertainty relations for information entropy in wave mechanics’’. Commun. Math. Phys. 44, 129 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  5. Sánchez-Moreno, P., Plastino, A., Dehesa, J.: A quantum uncertainty relation based on Fisher’s information. J. Phys. A: Math. Theor. 44, 065301 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Stam, A.: “Some inequalities satisfied by the quantities of information of Fisher and Shannon’’. Inf. Control. 2, 101 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dembo, A., Cover, T., Thomas, J.: “Information theoretic inequalities’’. IEEE Trans. Inform. Theory 37, 1501 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Vignat, C., Bercher, J.-F.: “Analysis of signals in the Fisher-Shannon information plane’’. Phys. Lett. A 312, 27 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Angulo, J., Antolín, J., Sen, K.: “Fisher-Shannon plane and statistical complexity of atoms’’. Phys. Lett. A 372, 670 (2008)

    Article  ADS  MATH  Google Scholar 

  10. Sobrino-Coll, N., Puertas-Centeno, D., Toranzo, I., Dehesa, J.: “Complexity measures and uncertainty relations of the high-dimensional harmonic and hydrogenic systems” J. Stat. Mech. (2017) 083102

  11. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: “Quantum entanglement’’. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Lewis, H.: “Classical and quantum systems with time-dependent harmonic-oscillator-type hamiltonians’’. Phys. Rev. Lett. 18, 510 (1967)

    Article  ADS  Google Scholar 

  13. Lewis, H., Riesenfeld, W.: Class of exact invariants for classical and quantum time-dependent harmonic oscillators. J. Math. Phys. 10, 1458 (1969)

    Article  ADS  MATH  Google Scholar 

  14. Ermakov, V.: “Second order differential equations. Conditions of complete integrability” Univ. Izv. Kiev, Series III 9 (1880) 1 (English translation: A. Harin, under redaction by P. Leach, Appl. Anal. Discrete Math. 2 (2008) 123)

  15. Milne, E.: “The numerical determination of characteristic numbers’’. Phys. Rev. 35, 863 (1930)

    Article  ADS  Google Scholar 

  16. Pinney, E.: “The nonlinear differential equation \(y^{\prime \prime }+p(x)y+cy^ {-3}=0\)’’. Proc. Am. Math. Soc. 1, 681 (1950)

    MathSciNet  MATH  Google Scholar 

  17. Choi, J., Kim, M.-S., Kim, D., Maamache, M., Menouar, S., Nahme, I.: “Information theories for time-dependent harmonic oscillator’’. Ann. Phys. 326, 1381 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Aktürk, E., Özcan, Ö., Sever, R.: “Joint entropy of the harmonic oscillator with time dependent mass and/or frequency’’. Int. J. Mod. Phys. B 23, 2449 (2009)

    Article  ADS  MATH  Google Scholar 

  19. Aguiar, V., Guedes, I.: “Fisher information of quantum damped harmonic oscillators’’. Phys. Scr. 90, 045207 (2015)

    Article  ADS  Google Scholar 

  20. Najafizade, S.A., Hassanabadi, H., Zarrinkamar, S.: Theoretical information measurement in nonrelativistic time-dependent approach. Indian J. Phys. 92, 183 (2018)

    Article  ADS  Google Scholar 

  21. Aguiar, V., Guedes, I.: “Joint entropy of quantum damped harmonic oscillators” Physica A 401 (2014) 159

  22. Fotue, A., Wirngo, A., Keumo Tsiaze, R., Hounkonnou, M.: Joint entropy and decoherence without dissipation in a driven harmonic oscillator. Eur. Phys. J. Plus 136, 131 (2016)

    Google Scholar 

  23. Aguiar, V., Guedes, I., Pedrosa, I.: “Tsallis, Rényi, and Shannon entropies for time-dependent mesoscopic RLC circuits” PTEP (2015) 113A01

  24. Aguiara, V., Guedes, I.: Entropy and information of a spinless charged particle in time-varying magnetic fields. J. Math. Phys. 57, 092103 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Burdet, G., Duval, C., Perrin, M.: “Time-dependent quantum systems and chronoprojective geometry’’. Lett. Math. Phys. 10, 255 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Duval, C., Burdet, G., Kunzle, H., Perrin, M.: “Bargmann structures and Newton-Cartan theory’’. Phys. Rev. D 31, 1841 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  27. Cariglia, M., Gibbons, G., van Holten, J.-W., Horvathy, P., Zhang, P.-M.: Conformal killing tensors and covariant hamiltonian dynamics. J. Math. Phys. 55, 122702 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Cariglia, M., Galajinsky, A., Gibbons, G., Horvathy, P.: “Cosmological aspects of the Eisenhart-Duval lift’’. Eur. Phys. J. C 78, 314 (2018)

    Article  ADS  Google Scholar 

  29. Cariglia, M., Duval, C., Gibbons, G., Horvathy, P.: “Eisenhart lifts and symmetries of time-dependent systems’’. Ann. Phys. 373, 631 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Ghosh, S., Gupta, K., Srivastava, S.: Entanglement dynamics following a sudden quench: an exact solution. EPL 120, 50005 (2017)

    Article  ADS  Google Scholar 

  31. Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, I., Zeh, H.: Decoherence and the appearance of a classical world in quantum theory. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  32. Zurek, W.: “Decoherence, einselection, and the quantum origins of the classical’’. Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Halliwell, J.: “Decoherence in quantum cosmology’’. Phys. Rev. D 39, 2912 (1989)

    Article  ADS  Google Scholar 

  34. Morikawa, M.: “Quantum decoherence and classical correlation in quantum mechanics’’. Phys. Rev. D 42, 2929 (1990)

    Article  ADS  Google Scholar 

  35. Nielsen, M., Chuang, I.: Quantum computation and quantum information. CUP, Cambridge (2011)

    MATH  Google Scholar 

  36. Haroche, S.: “Entanglement, decoherence and the quantum/classical boundary’’. Phys. Today 51, 36 (1998)

    Article  Google Scholar 

  37. Schlosshauer, M.: “Quantum decoherence’’. Phys. Rep. 831, 1 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  38. Bokulich, A., Jaeger, G.: Philosophy of quantum information and entanglement. CUP, Cambridge (2010)

    Book  MATH  Google Scholar 

  39. Shor, P.: “Scheme for reducing decoherence in quantum computer memory’’. Phys. Rev. A 52, R2493(R) (1995)

    Article  ADS  Google Scholar 

  40. Bombelli, L., Koul, R., Lee, J., Sorkin, R.: “Quantum source of entropy for black holes’’. Phys. Rev. D 34, 373 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Srednicki, M.: “Entropy and Area’’. Phys. Rev. Lett. 71, 666 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Klich, I., Levitov, L.: “Quantum noise as an entanglement meter’’. Phys. Rev. Lett. 102, 100502 (2009)

    Article  ADS  Google Scholar 

  43. Song, H., Rachel, S., Flindt, C., Klich, I., Laflorencie, N., Le Hur, K.: “Bipartite fluctuations as a probe of many-body entanglement’’. Phys. Rev. B 85, 035409 (2012)

    Article  ADS  Google Scholar 

  44. Das, S., Hampton, S., Liu, S.: Quantum quench in non-relativistic fermionic field theory: harmonic traps and 2d string theory. JHEP 08, 176 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Ciftja, O.: A simple derivation of the exact wavefunction of a harmonic oscillator with time-dependent mass and frequency. J. Phys. A: Math. Gen. 32, 6385 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Niederer, U.: “The maximal kinematical invariance group of the harmonic oscillator’’. Helv. Phys. Acta 46, 191 (1973)

    Google Scholar 

  47. Dhasmana, S., Sen, A., Silagadze, Z.: “Equivalence of a harmonic oscillator to a free particle and Eisenhart lift’’. Ann. Phys. 434, 168623 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kim, S., Lee, C.: “Nonequilibrium quantum dynamics of second order phase transitions’’. Phys. Rev. D 62, 125020 (2000)

    Article  ADS  Google Scholar 

  49. Dehesa, J., Guerrero, A., Sánchez-Moreno, P.: “Information-theoretic-based spreading measures of orthogonal polynomials’’. Complex Anal. Oper. Theory 6, 585 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. Maartens, R., Maharaj, S.: “Conformal symmetries of pp-waves’’. Class. Quant. Grav. 8, 503 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Keane, A., Tupper, B.: “Conformal symmetry classes for pp-wave spacetimes’’. Class. Quant. Grav. 21, 2037 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Bastidas, V., Reina, J., Emary, C., Brandes, T.: “Entanglement and parametric resonance in driven quantum systems’’. Phys. Rev. A 81, 012316 (2010)

    Article  ADS  Google Scholar 

  53. Chen, R.-X., Shen, L.-T., Yang, Z.-B., Wu, H.-Z.: “Transition of entanglement dynamics in an oscillator system with weak time-dependent coupling’’. Phys. Rev. A 91, 012312 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  54. Park, D.: “Dynamics of entanglement and uncertainty relation in coupled harmonic oscillator system: exact results’’. Quantum Inf. Process. 17, 147 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Ghosh, S., Gupta, K., Srivastava, S.: “Exact relaxation dynamics and quantum information scrambling in multiply quenched harmonic chains’’. Phys. Rev. E 100, 012215 (2019)

    Article  ADS  Google Scholar 

  56. Park, D.: “Dynamics of entanglement in three coupled harmonic oscillator system with arbitrary time-dependent frequency and coupling constants’’. Quantum Inf. Process. 18, 282 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  57. Park, D., Jung, E.: “Sum rule of quantum uncertainties: coupled harmonic oscillator system with time-dependent parameters’’. Quantum Inf. Process. 19, 259 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  58. Hab-Arrih, R., Jellal, A., Merdaci, A.: “Dynamics and redistribution of entanglement and coherence in three time-dependent coupled harmonic oscillators’’. Int J. Geom. Methods Mod. Phys. 18, 2150120 (2021)

    Article  MathSciNet  Google Scholar 

  59. Kim, S., Santana, A., Khanna, F.: Decoherence of quantum damped oscillators. J. Korean Phys. Soc. 43, 452 (2003)

    Google Scholar 

  60. Husimi, K.: “Miscellanea in elementary quantum mechanics, II’’. Prog. Theor. Phys. 9, 381 (1953)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. O’Connell, R., Zuo, J.: Effect of an external field on decoherence: Part II. J. Mod. Opt. 51, 821 (2004)

    Article  ADS  MATH  Google Scholar 

  62. Das, S.: “Old and new scaling laws in quantum quench” PTEP (2016) 12C107

  63. López-Ruiz, R., Mancini, H., Calbet, X.: “A statistical measure of complexity’’. Phys. Lett. A 209, 321 (1995)

    Article  ADS  Google Scholar 

  64. Ebert, M., Volosniev, A., Hammer, H.-W.: “Two cold atoms in a time-dependent harmonic trap in one dimension’’. Ann. Phys. 528, 693 (2016)

    Article  MATH  Google Scholar 

  65. Dinc, C., Oktay, O.: “Entanglement dynamics of coupled oscillators from Gaussian states” arXiv:2104.12332 (2021)

  66. Chandran, S. Mahesh, Shankaranarayanan, S.: “Divergence of entanglement entropy in quantum systems: Zero-modes” Phys. Rev. D 99 (2019) 045010

  67. Das, S., Hampton, S., Liu, S.: Quantum quench in c=1 matrix model and emergent space-times. JHEP 04, 107 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Andrzejewski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrzejewski, K. Dynamics of entropy and information of time-dependent quantum systems: exact results. Quantum Inf Process 21, 117 (2022). https://doi.org/10.1007/s11128-022-03440-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03440-w

Keywords

Navigation