Skip to main content
Log in

Dynamics of entanglement and uncertainty relation in coupled harmonic oscillator system: exact results

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The dynamics of entanglement and uncertainty relation is explored by solving the time-dependent Schrödinger equation for coupled harmonic oscillator system analytically when the angular frequencies and coupling constant are arbitrarily time dependent. We derive the spectral and Schmidt decompositions for vacuum solution. Using the decompositions, we derive the analytical expressions for von Neumann and Rényi entropies. Making use of Wigner distribution function defined in phase space, we derive the time dependence of position–momentum uncertainty relations. To show the dynamics of entanglement and uncertainty relation graphically, we introduce two toy models and one realistic quenched model. While the dynamics can be conjectured by simple consideration in the toy models, the dynamics in the realistic quenched model is somewhat different from that in the toy models. In particular, the dynamics of entanglement exhibits similar pattern to dynamics of uncertainty parameter in the realistic quenched model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 807 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Horodecki, R., Horodecki, P., Horodecki, M, Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009). arXiv:quant-ph/0702225

  4. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. A 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  5. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channles. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Scarani, V., Lblisdir, S., Gisin, N., Acin, A.: Quantum cloning. Rev. Mod. Phys. 77, 1225 (2005). arXiv:quant-ph/0511088

  8. Ekert, A.K.: Quantum cryptography based on bells theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Kollmitzer, C., Pivk, M.: Applied Quantum Cryptography. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  10. Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.: Quantum computers. Nature 464, 45 (2010). arXiv:1009.2267 (quant-ph)

    Article  ADS  Google Scholar 

  11. Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003). arXiv:quant-ph/0301063

    Article  ADS  Google Scholar 

  12. Ghernaouti-Helie, S., Tashi, I., Laenger, T., Monyk, C.: SECOQC business white paper. arXiv:0904.4073 (quant-ph)

  13. Hill, S., Wootters, W. K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997) arXiv:quant-ph/9703041

  14. Wootters, W. K.: Entanglement of formation of an arbitrary state of two qubits, ibid. 80, 2245 (1998) arXiv:quant-ph/9709029

  15. Horodecki, R., Horodecki, M.: Information-theoretic aspects of inseparability of mixed states. Phys. Rev. A 54, 1838 (1996). arXiv:quant-ph/9607007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Hawking, S.W.: Breakdown of predictability in gravitational collapse. Phys. Rev. D 14, 2460 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  18. ’t Hooft, G.: On the quantum structure of a black hole. Nucl. Phys B 256, 727 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  19. Bombelli, L., Koul, R.K., Lee, J., Sorkin, R.D.: Quantum source of entropy for black holes. Phys. Rev. D 34, 373 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Srednicki, M.: Entropy and area. Phys. Rev. Lett. 71, 666 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Solodukhin, S.N.: Entanglement entropy of black holes. Living Rev. Relativ. 14, 8 (2011). arXiv:1104.3712 (hep-th)

    Article  ADS  MATH  Google Scholar 

  22. Eisert, J., Cramer, M., Plenio, M.B.: Area laws for the entanglement entropy–a review. Rev. Mod. Phys. 82, 277 (2010). arXiv:0808.3773 (quant-ph)

    Article  ADS  MATH  Google Scholar 

  23. Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003). arXiv:quant-ph/0211074

    Article  ADS  Google Scholar 

  24. Levin, M., Wen, X.-G.: Detecting topological order in a ground state wave function. Phys. Rev. Lett. 96, 110405 (2006). arXiv:cond-mat/0510613

  25. Jiang, H.-C., Wang, Z., Balents, L.: Identifying topological order by entanglement entropy. Nat. Phys. 8, 902 (2012). arXiv:1205.4289 (cond-mat)

    Article  Google Scholar 

  26. Cohen-Tannoudji, C., Diu, B., Laloë, F.: Quantum Mechanics. Wiley, Toronto (1977)

    MATH  Google Scholar 

  27. Han, D., Kim, Y. S., Noz, M. E.: Coupled harmonic oscillators and Feynman’s rest of the universe. arXiv:cond-mat/9705029

  28. Feymann, R.P.: Statistical Mechanics. Benjamin/Cummings, Reading, MA (1972)

    Google Scholar 

  29. Makarov, D.N.: Coupled harmonic oscillators and their quantum entanglement. arXiv:1710.01158 (quant-ph)

  30. Ghosh, S., Gupta, K.S., Srivastava, S.C.L.: Entanglement dynamics following a sudden quench: an exact solution. arXiv:1709.02202 (quant-ph)

  31. Ikeda, S., Fillaux, F.: Incoherent elastic-neutron-scattering study of the vibrational dynamics and spin-related symmetry of protons in the \(KHCO_3\) crystal. Phys. Rev. B 59, 4134 (1999)

    Article  ADS  Google Scholar 

  32. Fillaux, F.: Quantum entanglement and nonlocal proton transfer dynamics in dimers of formic acid and analogues. Chem. Phys. Lett. 408, 302 (2005)

    Article  ADS  Google Scholar 

  33. Romero, E., Augulis, R., Novoderezhkin, V.I., Ferretti, M., Thieme, J., Zigmantas, D., van Grondelle, R.: Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat. Phys. 10, 676 (2014)

    Article  Google Scholar 

  34. Halpin, A., Johnson, P.J.M., Tempelaar, R., Murphy, R.S., Knoester, J., Jansen, T.L.C., Miller, R.J.D.: Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences. Nat. Chem. 6, 196 (2014)

    Article  Google Scholar 

  35. Lewis Jr., H.R., Riesenfeld, W.B.: An exact quantum theory of the timedependent harmonic oscillator and of a charged particle in a timedependent electromagnetic field. J. Math. Phys. 10, 1458 (1969)

    Article  ADS  MATH  Google Scholar 

  36. Lohe, M.A.: Exact time dependence of solutions to the time-dependent Schrödinger equation. J. Phys. A: Math. Theor. 42, 035307 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Pinney, E.: The nonlinear differential equation. Proc. Am. Math. Soc. 1, 681 (1950)

    MATH  Google Scholar 

  38. Grobe, R., Rzazewski, K., Eberly, J.H.: Measure of electron-electron correlation in atomic physics. J. Phys. B 27, L503 (1994)

    Article  ADS  Google Scholar 

  39. Ekert, A., Knight, P.L.: Entangled quantum systems and the Schmidt decomposition. Am. J. Phys. 63, 415 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Kim, Y.S., Noz, M.E.: Phase Space Picture of Quantum Mechanics. World Scientific, Singapore (1991)

    Book  Google Scholar 

  41. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000). arXiv:quant-ph/9907047

    Article  ADS  Google Scholar 

  42. Ou, Y.U., Fan, H.: Monogamy inequality in terms of negativity for three-qubit states. Phys. Rev. A 75, 062308 (2007). arXiv:quant-ph/0702127

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Kyungnam University Foundation Grant, 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DaeKil Park.

Appendix A

Appendix A

In this appendix we examine how to extend the main results of this paper to the excite states. If, for example, two oscillators are in ground and first-excited states initially, the reduced density matrix becomes

$$\begin{aligned} \rho _{(0, 1)}^A \left( x_1, x'_1: t\right)= & {} 2 \omega '_2 \rho _{(0, 0)}^A (x_1, x'_1: t) \nonumber \\&\left[ \frac{\cos ^2 \alpha }{2 D} + F_1 x_1^2 + F_1^* {x'_1}^2 + F_2 x_1 x'_1 \right] \end{aligned}$$
(A.1)

where \( \rho _{(0, 0)}^A (x_1, x'_1: t)\) is given in Eq. (4.2) and

$$\begin{aligned} F_1= & {} \frac{\sin ^2 \alpha \cos ^2 \alpha }{4 D^2} \bigg [ \left( \omega '_1 - \omega '_2 \right) \left\{ \omega '_1 (1 + \sin ^2 \alpha ) + \omega '_2 \cos ^2 \alpha \right\} \nonumber \\&\quad - \cos ^2 \alpha \left( \frac{\dot{b_1}}{b_1} - \frac{\dot{b_2}}{b_2} \right) ^2 - 2 i \omega '_1 \left( \frac{\dot{b_1}}{b_1} - \frac{\dot{b_2}}{b_2} \right) \bigg ] \nonumber \\ F_2= & {} \frac{1}{D} \left( 2 a_3 \cos ^2 \alpha + \omega '_1 \sin ^2 \alpha \right) . \end{aligned}$$
(A.2)

The explicit expression of \(a_3\) is given in Eq. (4.3). Then one can show

$$\begin{aligned} \text{ Tr } \left[ \rho _{(0,1)}^A \right]\equiv & {} \int \text {d}x \rho _{(0,1)}^A (x, x: t) = 1 \nonumber \\ \text{ Tr } \left[ \left( \rho _{(0,1)}^A \right) ^2\right]\equiv & {} \int \text {d}x \text {d}x' \rho _{(0,1)}^A (x, x': t) \rho _{(0,1)}^A (x', x: t) \nonumber \\= & {} \text{ Tr } \left[ \left( \rho _{(0,0)}^A \right) ^2\right] r(t) \end{aligned}$$
(A.3)

where r(t) is ratio of mixedness between \(\rho _{(0,0)}^A\) and \(\rho _{(0,1)}^A\) and its explicit expression is

$$\begin{aligned} r(t)= & {} 4 {\omega '_2}^2 \Bigg [ \frac{\cos ^4 \alpha }{4 D^2} + \frac{\cos ^2 \alpha }{4 D a_1 (a_1 + 2 a_3)} \left\{ \left( F_1 + F_1^*\right) a_1 + \left( F_1 + F_1^* + F_2\right) a_3 \right\} \nonumber \\&\quad + \frac{1}{16 a_1^2 (a_1 + 2 a_3)^2} \bigg [ a_1^2 \left\{ \left( F_1 + F_1^*\right) ^2 + 4 |F_1|^2 + F_2^2 \right\} + a_3^2 \nonumber \\&\quad \left\{ 3 \left( F_1 + F_1^*\right) ^2 + 3 F_2 \left( 2 F_1 + 2 F_1^* + F_2\right) \right\} \nonumber \\&\quad + 2 a_1 a_3 \left\{ \left( F_1 + F_1^*\right) ^2 + 4 |F_1|^2 + F_2 \left( 3 F_1 + 3 F_1^* + F_2\right) \right\} \bigg ] \Bigg ]. \end{aligned}$$
(A.4)

We expect that the entanglement between ground and first-excited harmonic oscillators is very small compared to that between two ground state harmonic oscillators. However, it is difficult to show this explicitly because the analytic derivation of eigenvalues and eigenfunctions for \( \rho _{(0,1)}^A (x, x': t)\) does not seem to be simple matter, at least for us. We hope to discuss the dynamics of entanglement for general excited (mn) state in the future. The time dependence of the uncertainty \(\Delta x_1 \Delta p_1\) for \(\rho _{(0,1)}^A\) can be computed analytically. The Wigner function \(W_{(0,1)} (x_1, p_1, t)\) for this state becomes

$$\begin{aligned} W_{(0,1)} (x_1, p_1, t)= & {} W_{(0,0)} (x_1, p_1, t) \nonumber \\&\left[ h_0 (t) + h_1 (t) x_1^2 + h_2 (t) p_1^2 + 2 h_3 (t) x_1 p_1 \right] \end{aligned}$$
(A.5)

where \(W_{(0,0)} (x_1, p_1, t)\) is the Wigner function for \(\psi _{0,0} (x_1, x_2, t)\) given in Eq. (5.5) and

$$\begin{aligned} h_0 (t)= & {} \frac{\omega '_1 \omega '_2}{\bar{\eta }} \cos 2 \alpha \nonumber \\ h_1 (t)= & {} \frac{2 \omega '_2 \sin ^2 \alpha }{\bar{\eta }^2} \nonumber \\&\left\{ \left[ \omega '_1 \tilde{D} + \cos ^2 \alpha \frac{\dot{b}_1}{b_1} \left( \frac{\dot{b}_1}{b_1} - \frac{\dot{b}_2}{b_2} \right) \right] ^2 + \left[ \omega '_1 \frac{\dot{b}_2}{b_2} \sin ^2 \alpha + \omega '_2 \frac{\dot{b}_1}{b_1} \cos ^2 \alpha \right] ^2 \right\} \nonumber \\ h_2 (t)= & {} \frac{2 \omega '_2 \sin ^2 \alpha }{\bar{\eta }^2} \left[ D^2 + \cos ^4 \alpha \left( \frac{\dot{b}_1}{b_1} - \frac{\dot{b}_2}{b_2} \right) ^2 \right] \nonumber \\ h_3 (t)= & {} \frac{2 \omega '_2 \sin ^2 \alpha }{\bar{\eta }^2} \Bigg \{ \cos ^2 \alpha \left( \frac{\dot{b}_1}{b_1} - \frac{\dot{b}_2}{b_2} \right) \left[ \omega '_1 \tilde{D} + \cos ^2 \alpha \frac{\dot{b}_1}{b_1} \left( \frac{\dot{b}_1}{b_1} - \frac{\dot{b}_2}{b_2} \right) \right] \nonumber \\&+ D \left[ \omega '_1 \frac{\dot{b}_2}{b_2} \sin ^2 \alpha + \omega '_2 \frac{\dot{b}_1}{b_1} \cos ^2 \alpha \right] \Bigg \}. \end{aligned}$$
(A.6)

Then, it is straightforward to show that the uncertainty relation for \(\rho _{(0,1)}^A\) becomes \((\Delta x_1 \Delta p_1)^2 = \Gamma (t) / 4\), where

$$\begin{aligned} \Gamma (t)= & {} \left( \frac{\bar{\eta }}{\omega '_1 \omega '_2} \right) ^2 \left[ \left( h_0 \alpha _2 + \frac{h_2}{2} \right) + \frac{3 \bar{\eta }}{2 \omega '_1 \omega '_2} \left( h_1 \alpha _2^2 + h_2 \alpha _3^2 + 2 h_3 \alpha _2 \alpha _3 \right) \right] \nonumber \\&\quad \times \left[ \left( h_0 \alpha _1 + \frac{h_1}{2} \right) + \frac{3 \bar{\eta }}{2 \omega '_1 \omega '_2} \left( h_2 \alpha _1^2 + h_1 \alpha _3^2 + 2 h_3 \alpha _1 \alpha _3 \right) \right] \end{aligned}$$
(A.7)

where \(\alpha _j\) are defined in Eq. (5.6).

Fig. 4
figure 4

(Color online) The time dependence of ratio for mixedness r(t) (a) and uncertainties \(\Gamma (t) / \Omega (t)\) (b) between \(\rho _{(0,0)}^A\) and \(\rho _{(0,1)}^A\) in the realistic quenched model. We choose \(\omega _{1, i} = 1\), \(\omega _{1, f} = 1.3\), \(\omega _{2, i} = 1.5\), and \(\omega _{2, f} = 1.8\) for \(J = 1.1\) (red solid line), \(J = 0.9\) (blue dashed line), and \(J = 0.6\) (black dotted line). Since \(r(t) < 1\) in the full range of time. a Indicates that \(\rho _{(0,1)}^A\) is more mixed state than \(\rho _{(0,0)}^A\). It is of interest to note that \(\rho _{(0,1)}^A\) becomes more and more mixed compared to \(\rho _{(0,0)}^A\) with increasing the coupling constant J. b Shows that the uncertainty \(\Delta x_1 \Delta p_1\) increases in \(\rho _{(0,1)}^A\) compared to that of \(\rho _{(0,0)}^A\). The increasing rate becomes larger with increasing the coupling constant J

The time dependence of the ratios r(t) and \(\Gamma (t) / \Omega (t)\) for the realistic quenched model is plotted in Fig. 4, where \(\omega _{1, i} = 1\), \(\omega _{1, f} = 1.3\), \(\omega _{2, i} = 1.5\), and \(\omega _{2, f} = 1.8\) are chosen. The red solid, blue dashed, and black dotted lines correspond to \(J=1.1\), \(J=0.9\), and \(J=0.6\), respectively. The fact \(r(t) < 1\) in the full range of time indicates that \(\rho _{(0,1)}^A\) is more mixed than \(\rho _{(0,0)}^A\). It is of interest to note that \(\rho _{(0,1)}^A\) becomes more mixed compared to \(\rho _{(0,0)}^A\) with increasing the coupling constant J. Figure 4b indicates that the uncertainty \(\Delta x_1 \Delta p_1\) increases in \(\rho _{(0,1)}^A\) compared to that of \(\rho _{(0,0)}^A\). The increasing rate becomes larger with increasing the coupling constant J.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, D. Dynamics of entanglement and uncertainty relation in coupled harmonic oscillator system: exact results. Quantum Inf Process 17, 147 (2018). https://doi.org/10.1007/s11128-018-1914-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1914-x

Keywords

Navigation