Skip to main content
Log in

Ternary optimal quantum codes constructed from caps in \(PG(k,9)(k \ge 2)\)

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

By recursive construction and computer-supported search method, the spectrum of quantum caps in projective space \(PG(k,9)(k \ge 2)\) is determined. Through Hermitian construction, the obtained quantum caps are used to construct ternary quantum codes of \(d=4\). As a result, for each integer n satisfying \(n\ge 10\), a quantum n-cap in \(PG(k-1,9)\) with suitable k and its related ternary \([[n,n-2k,4]]\) quantum code are constructively proven to exist. According to quantum GV bound and quantum Hamming bound, all quantum codes are optimal. In addition, while constructing quantum caps, the cardinalities of maximal caps in PG(7, 9) and PG(8, 9) are also improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Majumdar, R., Dudam,S., Sur-Kolay, S., Bhattacharya, B., Dhande, A.P.:Near-optimal error correcting code for ternary quantum systems. Preprint, arXiv:1906.11137v1

  2. Ketkar, A., Klappenecker., Kumar, S., Sarvepalli, P. K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory. 52(11), 4892–4914 (2006)

  3. Rains, E.M.: Quantum codes of minimum distance two. IEEE Trans. Inf. Theory 45(1), 266–271 (1999)

    Article  MathSciNet  Google Scholar 

  4. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)

    Article  MathSciNet  Google Scholar 

  5. Gottesman, D.: Stabilizer codes and quantum error correction. Ph.D.Thesis, California Institute of Technology(1977)

  6. Li, R.: Research on additive quantum error-correcting codes. Ph. D. Thesis, Northwestern Polytechnical University, Xian, China(2004)

  7. Li, R., Li, X.: Binary construction of quantum codes of minimum distance three and four. IEEE Trans. Inf. Theory 50(6), 1331–1335 (2004)

    Article  MathSciNet  Google Scholar 

  8. Li, R., Li, X., Xu, Z.: Linear quantum codes of minimum distance three. Int. J. Quantum Inf. 4(6), 917–923 (2006)

    Article  Google Scholar 

  9. Yu, S., Bierbrauer, J., Dong, Y., Chen, Q., Oh, C.H.: All the stabilizer codes of distance 3. IEEE Trans. Inf. Theory 59(8), 5179–5185 (2013)

    Article  MathSciNet  Google Scholar 

  10. Bierbrauer, J., Edel, Y.: Large caps in projective galois spaces. Current research topics in Galois geometry, 81-94(2010)

  11. Bartoli, D., Bierbrauer, J., Marcugini, S., Pambianco, F.: Geometric constructions of quantum codes. Error-Correcting Codes, Finite Geometries and Cryptography, AMS, Series: Contempo-rary Mathematics 523, Aiden A. Bruen and David L. Wehlau (Editors), Providence, RI, USA, 149-154(2010)

  12. Tonchev, V.D.: Quantum codes from caps. Discrete Math. 308(24), 6368C6372 (2008)

    Article  MathSciNet  Google Scholar 

  13. Bartoli, D., Faina, G., Marcugini, S., Pambianco, F.: New quantum caps in PG(4,4). J. Comb. Des. 20(10), 448–466 (2012)

    Article  MathSciNet  Google Scholar 

  14. Bierbrauer, J., Bartoli, D., Faina, G., Marcugini, S., Pambianco, F., Edel, Y.: The structure of quaternary quantum caps. Des. Codes Cryptogr. 72, 733–747 (2014)

    Article  MathSciNet  Google Scholar 

  15. Li, R., Fu, Q., Guo, L., Li, X.: Construction of quantum caps in projective space PG(r,4) and quantum codes of distance 4. Quantum Inf. Processing. 15(2), 689–720 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  16. Fu, Q., Li, R., Guo, L., Xu, G.: Large caps in projective space PG(r,4). Finite Fields Their Appl. 35, 231–246 (2015)

    Article  MathSciNet  Google Scholar 

  17. Li, H., Li, R., Fu, Q.: New quantum codes constructed by quantum caps in PG(3,9) and PG(4,9). IEEE Access. 8, 227894–227900 (2020)

    Article  Google Scholar 

  18. Edel, Y.: Table of quantum twisted codes. electronic address: www.mathi.uniheidelberg.de/yves/matritzen/QTBCH/QTBCHIndex.html

  19. Jin, L., Ling, S., Luo, J., Xing, C.: Application of classical hermitian self-orthogonal MDS codes to quantum MDS codes. IEEE Trans. Inf. Theory 56(9), 4735–4740 (2010)

    Article  MathSciNet  Google Scholar 

  20. Cao, M., Cui, J.: Construction of new quantum codes via hermitian dual-containing matrix-product codes. Quantum Inf. Process. 19, 427 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  21. Feng, K., Ma, Z.: A finite Gilbert-Varshamov bound for pure stabilizer quantum codes. IEEE Trans. Inf. Theor. 50(12), 3323–3325 (2004)

    Article  MathSciNet  Google Scholar 

  22. Gottesman, D.: Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A. 54(3), 1862–1868 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  23. Huffman, W.C., Pless, V.: Fundamentals of error-correcting codes. Cambridge University Press(2003)

  24. Edel, Y., Bierbrauer, J.: Recursive constructions for large caps. Bull. Belg. Math. Soc. Simon Stevin. 6(2), 249–258 (1999)

    Article  MathSciNet  Google Scholar 

  25. Fu, Q.: Research on some coding problems in quantum communication and network communication. Ph. D. Thesis, Air Force Engineering University, Xian, China(2018)

  26. Li, H., Li, R., Yao, Y., Fu, Q.: Some quantum error-correcting codes with d=5. J. Phys. Conf. Ser. 1684, 12078 (2020)

    Article  Google Scholar 

  27. Rains, E.: Nonbinary quantum codes. IEEE Trans. Inf. Theor. 45(6), 1827–1832 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the Graduate Scientific Research Foundation of Department of Basic Sciences of Air Force Engineering University and National Natural Science Foundation of China (Nos.11801564, 11901579, U21A20428).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Husheng Li.

Ethics declarations

Data availability statement

This paper has no associated data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The equivalent 82-cap \(G_{4,82}'\) mentioned in Sect. 3.2 is as follows:

$$\begin{aligned} G_{4,82}'= & {} (S_{1}',S_{2}'), \\ S_{1}'= & {} \left( {\begin{array}{*{20}{c}} {111111111111111111111111111111111111111111}\\ {085236662404010162228653083426814237154432}\\ {064406328514063306844806815270606583151145}\\ {067303510672164071464274256265750754124143} \end{array}} \right) , \\ S_{2}'= & {} \left( {\begin{array}{*{20}{c}} {1111111111111111111111111111111111111110}\\ {1100365855803553528004468115438614326184}\\ {2113135348424221832282458060651825065338}\\ {0340510535712537013274626132173650243681} \end{array}} \right) . \end{aligned}$$

The 212-cap \(G_{5,212}'\) mentioned in Sect. 3.2 is as follows:

$$\begin{aligned}&{{G}_{5,212}}\mathrm{{ = }}\left( {\begin{array}{*{20}{c}} {{{G}_{5,198}}} \end{array}\;\left| {\begin{array}{*{20}{c}} 1&{} \cdots &{}1&{}0&{}0&{}0\\ {{\beta _{199}}}&{} \cdots &{}{{\beta _{209}}}&{}{{\beta _{210}}}&{}{{\beta _{211}}}&{}{{\beta _{212}}} \end{array}} \right. } \right) ,{G_{5,198}} = \left( {{Q_{65}},{Q_{66}},{Q_{67}}} \right) ,\\&\left( {\begin{array}{*{20}{c}} 1&{} \cdots &{}1&{}0&{}0&{}0\\ {{\beta _{199}}}&{} \cdots &{}{{\beta _{209}}}&{}{{\beta _{210}}}&{}{{\beta _{211}}}&{}{{\beta _{212}}} \end{array}} \right) = \left( \begin{array}{l} \mathrm{{11111111111000}}\\ \mathrm{{51426388220420}}\\ \mathrm{{26534870806030}}\\ \mathrm{{51426382545120}}\\ \mathrm{{06357756321021}} \end{array} \right) , \\&{Q_{65}=\left( \begin{array}{cccccc} 11111111111111111111111111111111111111111111111111111111111111111\\ 02516018305827800514601830582780120752477126614326385247712661430\\ 06540853721626381073406723516413802772160853051445682351406770821\\ 01400342413673480514034241367348084785718207560226388571820756027\\ 04600057102030600063005710203060000036638448577557753663844857757\\ \end{array} \right) }, \\&{Q_{66}=\left( \begin{array}{cccccc} 111111111111111111111111111111111111111111111111111111111111111111\\ 847836270153610047630244015861051237185236854775123718523685427743\\ 727452187466625627115878305170307460861132547538305320462715864158\\ 736757080156043725485464015204308610317236887710861031723688751635\\ 063007501520438754884637152643854784683215784065478468321578436360\\ \end{array} \right) }, \\&{Q_{67}=\left( \begin{array}{cccccc} 1111111111111111111111111111111111111111111111111111111111111111111\\ 4763024413461250606258305027852137815521378156074432060744330478306\\ 3257254046357320461085376142872548546158774380861031732042531841237\\ 2548546422056142828146413873406810137068101374752684547526864367528\\ 5488463702100557777553366448800750084007500846336122163361200483683\\ \end{array} \right) }. \end{aligned}$$

The 840-cap \(G_{6,840}\) mentioned in Sect. 3.3 is as follows:

$$\begin{aligned} {{G}_{6,840}}= & {} \left( {\begin{array}{*{20}{c}} 1&{} \cdots &{}1&{}0&{} \cdots &{}0\\ {{\gamma _1}}&{} \cdots &{}{{\gamma _{830}}}&{}{{\gamma _{831}}}&{} \cdots &{}{{\gamma _{840}}} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {{1_{70}}}&{}{{1_{70}}}&{} \cdots &{}{{1_{70}}}&{}{{1_{60}}}&{}{{0_{10}}}\\ {{\mathbf{{Y}}_1}}&{}{{\mathbf{{Y}}_2}}&{} \cdots &{}{{\mathbf{{Y}}_{11}}}&{}{{\mathbf{{Y}}_{12}}}&{}\mathbf{{Z}} \end{array}} \right) ,\\ \mathbf{{Y}}_1= & {} \left( \begin{array}{cccccc} 3186556813186556813386556813316556813318556813318656813318656813318655\\ 0474307535014230234505225084480324105432034740535705767085860168702816\\ 1755142788538311665861138358562415571887848132162481544257722337476462\\ 0474307535474307535074307535044307535047307535047407535047437535047430\\ 1755142788755142788155142788175142788175142788175542788175512788175514\\ \end{array} \right) , \\ \mathbf{{Y}}_2= & {} \left( \begin{array}{cccccc} 8133186556133186556833186556811425787524425787524125787524145787524142\\ 0488407117078610618207675068587336168187672374462358121857474473276326\\ 6747332264524451827712318484263035770118702781068260187207281077530381\\ 5350474307350474307550474307537336168187336168187736168187736168187733\\ 7881755142881755142781755142783035770118035770118335770118305770118303\\ \end{array} \right) , \\ \mathbf{{Y}}_3= & {} \left( \begin{array}{cccccc} 7875241425875241425775241425785241425787241425787541425787521164755746\\ 8616337781342455663288316351654758574212536138856165542432366088510146\\ 2015250717502246067520341501541051430245606422055770525102712854253384\\ 1681877336681877336181877336161877336168877336168177336168186088510146\\ 7701183035701183035701183035771183035770183035770183035770112854253384\\ \end{array} \right) , \\ \mathbf{{Y}}_4= & {} \left( \begin{array}{cccccc} 1647557461647557461147557461167557461164557461164757461164757461164755\\ 6075710561402772041150175706161015880664202833044720732305751082280155\\ 2727156136316517272683352458245637764835766481478173263151525151362372\\ 0885101466885101466085101466085101466088101466088501466088511466088510\\ 8542533842542533842842533842852533842854533842854233842854253842854253\\ \end{array} \right) , \\ \mathbf{{Y}}_5= & {} \left( \begin{array}{cccccc} 4611647557611647557463747365853747365856747365856347365856377365856374\\ 5032370257403382027471345713455417654176333333333314567145673175431754\\ 8741846671384677365574210742105273052730372503725012470124703486034860\\ 4660885101660885101471345713451345713457345713457145713457135713457134\\ 8428542533428542533874210742104210742107210742107410742107420742107421\\ \end{array} \right) , \end{aligned}$$
$$\begin{aligned} \mathbf{{Y}}_6= & {} \left( \begin{array}{cccccc} 3658563747658563747358563747368563747365563747365883387211273387211278\\ 5268752687782537825366666666662873528735625786257866088510141607571056\\ 5812058120715607156065170651702185021850684306843042854253386272715613\\ 7134571345134571345734571345714571345713571345713466088510146088510146\\ 7421074210421074210721074210741074210742074210742142854253382854253384\\ \end{array} \right) , \\ \mathbf{{Y}}_7= & {} \left( \begin{array}{cccccc} 3872112783872112783372112783382112783387112783387212783387212783387211\\ 1402772041650175706141015880667202833044520732305751082280157503237025\\ 6316517272483352458255637764831766481478273263151525151362371874184667\\ 0885101466885101466085101466085101466088101466088501466088511466088510\\ 8542533842542533842842533842852533842854533842854233842854253842854253\\ \end{array} \right) , \\ \mathbf{{Y}}_8= & {} \left( \begin{array}{cccccc} 7833872112824283616324283616384283616382283616382483616382423616382428\\ 4403382027877336168123672374464758121857264473276381861633773234245566\\ 5384677365183035770182702781062860187207811077530317201525077550224606\\ 4660885101877336168177336168187336168187336168187736168187736168187733\\ 8428542533183035770183035770113035770118035770118335770118305770118303\\ \end{array} \right) , \\ \mathbf{{Y}}_9= & {} \left( \begin{array}{cccccc} 6163824283163824283663824283613824283616372273144172273144132273144137\\ 6588316351124758574261536138853665542432535047430734501423024480522508\\ 5420341501451051430257606422057170525102788175514265853831168566113835\\ 1681877336681877336181877336161877336168535047430735047430755047430753\\ 7701183035701183035701183035771183035770788175514288175514278175514278\\ \end{array} \right) , \\ \mathbf{{Y}}_{10}= & {} \left( \begin{array}{cccccc} 2731441372731441372231441372271441372273441372273141372273141372273144\\ 4320324105357034740558605767088160168702117048840718207861068580767506\\ 8872415571624848132177281544254622337476264674733227752445184261231848\\ 0474307535474307535074307535044307535047307535047407535047437535047430\\ 1755142788755142788155142788175142788175142788175542788175512788175514\\ \end{array} \right) , \\ \mathbf{{Y}}_{11}= & {} \left( \begin{array}{cccccc} 5258642468258642468558642468528642468525642468525842468525862468525864\\ 5864485265232355158151782871568510532321621844685547137743887274216167\\ 4204232063550337808448086330553603324024145826705361036810815404877066\\ 5864480265864480265564480265584480265586480265586480265586440265586448\\ 4204230063204230063404230063424230063420230063420430063420420063420423\\ \end{array} \right) , \\ \mathbf{{Y}}_{12}= & {} \left( \begin{array}{cccccc} 468525864268525864248525864246000000006078403873540000000000\\ 452737254161612472078347731248000000000000000000001025520177\\ 660778404318018630663507628741000000000000000000005367276351\\ 265586448065586448025586448026187763816336163187780000000000\\ 063420423063420423003420423006118353077035770118300000000000\\ \end{array} \right) , \\ \mathbf{{Z}}= & {} \left( \begin{array}{cccccc} 2222222222\\ 8262841314\\ 0255201771\\ 4444444444\\ 1111111111\\ \end{array} \right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Li, R., Fu, Q. et al. Ternary optimal quantum codes constructed from caps in \(PG(k,9)(k \ge 2)\). Quantum Inf Process 21, 96 (2022). https://doi.org/10.1007/s11128-022-03437-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03437-5

Keywords

Navigation