Skip to main content
Log in

Construction of quantum caps in projective space PG(r, 4) and quantum codes of distance 4

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Constructions of quantum caps in projective space PG(r, 4) by recursive methods and computer search are discussed. For each even n satisfying \(n\ge 282\) and each odd z satisfying \(z\ge 275\), a quantum n-cap and a quantum z-cap in \(PG(k-1, 4)\) with suitable k are constructed, and \([[n,n-2k,4]]\) and \([[z,z-2k,4]]\) quantum codes are derived from the constructed quantum n-cap and z-cap, respectively. For \(n\ge 282\) and \(n\ne 286\), 756 and 5040, or \(z\ge 275\), the results on the sizes of quantum caps and quantum codes are new, and all the obtained quantum codes are optimal codes according to the quantum Hamming bound. While constructing quantum caps, we also obtain many large caps in PG(r, 4) for \(r\ge 11\). These results concerning large caps provide improved lower bounds on the maximal sizes of caps in PG(r, 4) for \(r\ge 11\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, R.D., Bonisoli, A., Cossidente, A., Ebert, G.L.: Mixed partitions of \(PG(5, q)\). Discrete Math. 208(209), 23–29 (1999)

    Article  MathSciNet  Google Scholar 

  2. Bartoli, D., Marcugini, S.: F. Pambianco.: new quantum caps in PG(4,4). J. Comb. Des. 20, 448–466 (2012). see also arXiv:0905.1059v2

    Article  MathSciNet  MATH  Google Scholar 

  3. Bierbrauer, J., Bartoli, D., Faina, G., Marcugini, S., Pambianco, F., Edel, Y.: The structure of quaternary quantum caps. Des. Codes Cryptogr. 72, 733–747 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bierbrauer, J.: Introduction to Coding Theory. Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton (2005)

    Google Scholar 

  5. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error-correction via codes over \(GF(4)\). IEEE. Trans. Inf. Theory 44, 1369–1387 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Davydov, A., Faina, G., Marcugini, S., Pambianco, F.: On sizes of complete caps in projective spaces \(PG(n, q)\) and arcs in planes \(PG(2, q)\). J. Geom. 94, 31–58 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Edel, Y., Bierbrauer, J.: 41 is the largest size of a cap in \(PG(4,4)\). Des. Codes Crypt. 16, 151–160 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Edel, Y., Bierbrauer, J.: Recursive constructions for large caps. Bull. Belg. Math. Soc. Simon Stevin 6, 249–258 (1999)

    MathSciNet  MATH  Google Scholar 

  9. Edel, Y., Bierbrauer, J.: Large caps in small spaces. Des. Codes Crypt. 23, 197–212 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Edel’s homepage.: http://www.mathi.uni-heidelberg.de/~yves

  11. Ezerman, M.F., Ling, S., Sole, P.: Additive asymmetric quantum codes. IEEE Trans. Inf. Theory 57, 5536–5550 (2014)

    Article  MathSciNet  Google Scholar 

  12. Feng, K., Chen, H.: Quantum Error-Correcting Codes. Science Press, Beijing (2010). (in Chinese)

    Google Scholar 

  13. Fu, Q., Li, R., Guo, L., Gen, X.: Large caps in projective space \(PG(r,4)\). Finite Fields Appl. 35, 231–246 (2015)

    Article  MathSciNet  Google Scholar 

  14. Glynn, D.G.: A 126-cap of \(PG(5,4)\) and its corresponding [126,6,88]-code. Util. Math. 55, 201–210 (1999)

    MathSciNet  MATH  Google Scholar 

  15. Gottesman, D.: Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54, 1862–1868 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  16. Gottesman, D.: Stabilizer codes and quantum error correction. Ph.D. Thesis, California Institute of Technology (1997)

  17. Grassl, M.: Bounds on the minimum distance of linear codes. http://www.codetables.de (2014). Accessed 31 Aug

  18. Hirschfeld, J.W.P., Thas, J.A.: General Galois Geometries. Oxford University Press, Oxford (1991)

    MATH  Google Scholar 

  19. Hirschfeld, J.W.P., Storme, L.: The packing problem in statistics, coding theory and finite projective spaces: update 2001. In: Blokhuis, A., Hirschfeld, J.W.P., Jungnickel, D., Thas, J.A. (eds) Finite Geometries, vol. 3 of Developmental Mathematics, pp. 201–246. Kluwer Academic Publishers, Dordrecht (2001)

  20. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  21. Li, R.: Research on additive quantum error-correcting codes. Ph.D. Thesis, Northwestern Polytechnical University, Xi’an, China (2004)

  22. Li, R., Li, X.: Binary construction of quantum codes of minimum distance three and four. IEEE. Trans. Inf. Theory 50, 1331–1336 (2004)

    Article  MATH  Google Scholar 

  23. Li, R., Li, X., Xu, Z.: Linear quantum codes of minimum distance three. Int. J. Quantum Inf. 4, 265–272 (2006)

    Google Scholar 

  24. Li, R., Fu, Q., Guo, L.: Maximal entanglement-assisted constructed from projective caps. J. Air Force Eng. Univ. 15, 83–86 (2014)

    Google Scholar 

  25. Ma, Y., Zhao, X., Li, R., Feng, Y.: Caps in \(PG(k-1,4)\) and construction of quantum codes. J. Northwest. Univ. 33, 210–213 (2008)

    MathSciNet  Google Scholar 

  26. Nielsen, M.A., Chuang, I.L.: Quantum Comput. Quantum Inf. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  27. Tonchev, V.: Quantum codes from caps. Discrete Math. 308, 6368–6372 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Guo, L., Fu, Q., Li, R., Li, X.: On Shortening Construction of Self-Orthogonal Quaternary Codes. The seventh International Workshop on Signal Design and its Applications in Communications (IWSDA15), pp. 99–102 (2015)

  29. Yu, S.X., Bierbrauer, J., Dong, Y., Chen, Q., Oh, C.H.: All the stabilizer codes of distance 3. IEEE. Trans. Inf. Theory 59, 1331–1336 (2013)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundations of China under Grant Nos. 11471011, 11071255 and “973” program of China under Grant No. 2013CB834204. A part of this work was carried out while R. Li was visiting the Chern Institute of Mathematics (CIM) at Nankai University. R. Li is grateful to the Chern Institute for kind hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruihu Li.

Appendices

Appendix A

The 126-cap \(\mathbf {G}_{6, 126}\) mentioned in Sect. 2 is as follows:

$$\begin{aligned} \mathbf {G}_{6,126}=(\mathbf {Q}_{1}, \mathbf {Q}_{2},\ldots , \mathbf {Q}_{15},\mathbf { R})=(\mathbf {M}_{1}\quad \mathbf {M}_{2}\quad \mathbf {M}_{3}), \end{aligned}$$

where

$$\begin{aligned} \mathbf {M}_1= & {} (\mathbf {Q}_{1},\mathbf {Q}_{2},\ldots ,\mathbf {Q}_{6})\\&=\left( \begin{array}{c} 111111111111111111111111 111111111111111111111111\\ 231223121312121313232313 002312310023123100322113\\ 000011330022112233332211 232323231212121213131313\\ 112211223322223333111133 001122330011223300112233\\ 000000000000000000000000 111111112222222233333333\\ 000011330011222211223333 000000000000000000000000\\ \end{array} \right) ,\\ \mathbf {M}_2= & {} (\mathbf {Q}_{7},\mathbf {Q}_{8},\ldots ,\mathbf {Q}_{12})\\&=\left( \begin{array}{c} 111111111111 111111111111 111111111111111111111111\\ 112321132232 213133232131 333212131123211322231213\\ 232323231212 121213131313 232323231212121213131313\\ 001122330011 223300112233 001122330011223300112233\\ 111111112222 222233333333 111111112222222233333333\\ 111111111111 111111111111 222222222222222222222222\\ \end{array} \right) ,\\ \mathbf {M}_3= & {} (\mathbf {Q}_{13},\mathbf {Q}_{14},\mathbf {Q}_{15},\mathbf {R})\\&=\left( \begin{array}{c} 111111111111111111111111 000000\\ 223221313332121311321231 111111\\ 232323231212121213131313 231213\\ 001122330011223300112233 000000\\ 111111112222222233333333 000000\\ 333333333333333333333333 112233\\ \end{array} \right) . \end{aligned}$$

Appendix B

The weight polynomial of code generated by 288-cap \(\mathbf {G}_{7,288}\) in PG(6, 4) is \(Wt_{288}(z)=1+1089z^{202}+270z^{203}+120z^{204}+990z^{206}+18z^{207}+225z^{210} +5400z^{215}+900z^{216}+3267z^{218}+360z^{219}+2970z^{222}+675z^{226} +3z^{256}+90z^{267}+6z^{271}\).

The matrix \(\mathbf {G}'_{7,288}\) given in Sect. 3 is as follows:

$$\begin{aligned} \mathbf {G}'_{7,288} = ({\mathbf {S}'_1}\;{\mathbf {S}'_2}\;{\mathbf {S}'_3}\;{\mathbf {S}'_4}\;{\mathbf {S}'_5}) =\left( \begin{array}{ccc} 1&{} \cdots &{}1\\ {\widetilde{\eta }_1}&{} \cdots &{}{\widetilde{\eta } _{271}} \end{array}\qquad \begin{array}{ccc} 0&{} \cdots &{}0 \\ {\widetilde{\eta }_{272}}&{} \cdots &{}{\widetilde{\eta } _{288}} \end{array}\right) , \end{aligned}$$

where

$$\begin{aligned} {\mathbf {S}'_1}= & {} \left( \begin{array}{c} 111111111111111111111111111111111111111111111111111111111111\\ 333333333333333333333333333333333333333333333333222222222222\\ 000000000000000022222222222222222222222222222222333333333333\\ 000000000000000000000000000000003333333333333333333333333333\\ 011123323133122201112332313312220111233231331222033312212322\\ 002213203102113300221320310211330022132031021133001132102301\\ 000311310110333200031131011033320003113101103332000233230330 \end{array}\right) ,\\ {\mathbf {S}'_2}= & {} \left( \begin{array}{c} 111111111111111111111111111111111111111111111111111111111111\\ 222211111111111111111111111111111111222222222222222211111111\\ 333311111111111111113333333333333333000000000000000011111111\\ 333322222222222222221111111111111111333333333333333300000000\\ 311102223113121123330222311312112333033312212322311102223113\\ 332200332130120322110033213012032211001132102301332200332130\\ 222100012212022011130001221202201113000233230330222100012212 \end{array} \right) , \end{aligned}$$
$$\begin{aligned} {\mathbf {S}'_3}= & {} \left( \begin{array}{c} 111111111111111111111111111111111111111111111111111111111111\\ 111111113333333333333333111111111111111111111111111111113333\\ 111111111111111111111111000000000000000033333333333333331111\\ 000000001111111111111111222222222222222200000000000000003333\\ 121123330111233231331222022231131211233302223113121123330111\\ 120322110022132031021133003321301203221100332130120322110022\\ 022011130003113101103332000122120220111300012212022011130003 \end{array} \right) ,\\ {\mathbf {S}'_4}= & {} \left( \begin{array}{c} 111111111111111111111111111111111111111111111111111111111111\\ 333333333333222222222222222222222222222222222222222222222222\\ 111111111111333333333333333322222222222222222222222222222222\\ 333333333333222222222222222222222222222222221111111111111111\\ 233231331222033312212322311103331221232231110333122123223111\\ 132031021133001132102301332200113210230133220011321023013322\\ 113101103332000233230330222100023323033022210002332303302221 \end{array} \right) ,\\ {\mathbf {S}'_5}= & {} \left( \begin{array}{c} 111111111111111111111111111111100000000000000000\\ 000000000000000000000000000000001111111111111111\\ 000000000000000022313011031322000000000000000000\\ 111111111111111112230210312330000000000000000000\\ 022231131211233322231131211233310222311312112333\\ 003321301203221100000000000000000033213012032211\\ 000122120220111322231131211233310001221202201113 \end{array} \right) . \end{aligned}$$

The weight polynomials of the codes and their dual generated by the quantum caps constructed in Sect. 3.2 are as follows:

$$\begin{aligned} Wt_{256}(z)= & {} 1+288z^{176}+2304z^{180}+6780z^{192}+6912z^{196}+96z^{240}+3z^{256},\\ Wt^{\perp }_{256}(y)= & {} 1+1220160y^{4}+116951040y^{5}+\cdots .\\ Wt_{262}(z)= & {} 1+156z^{180}+180z^{182}+1584z^{184}+672z^{186}+60z^{192}+5184z^{196}\\&+\,1680z^{198}+4752z^{200}+2016z^{202}+36z^{244}+60z^{246}+3z^{256},\\ Wt^{\perp }_{262}(y)= & {} 1+1316685y^{4}+132678720y^{5}+\cdots .\\ Wt_{268}(z)= & {} 1+3z^{180}+54z^{184}+252z^{186}+1179z^{188}+900z^{190}+204z^{192}\\&+\,81z^{196}+48z^{198}+3942z^{200}+2556z^{202}+3753z^{204}+2700z^{206}\\&+\,612z^{208}+72z^{250}+24z^{252}+3z^{256},\\ Wt^{\perp }_{268}(y)= & {} 1+1421013y^{4}+149837328y^{5}+\cdots .\\ Wt_{282}(z)= & {} 1+6z^{194}+150z^{196}+1062z^{198}+897z^{200}+453z^{202}+117z^{204}\\&+\,27z^{206}+408z^{208}+2754z^{210}+2571z^{212}+3609z^{214}+2706z^{216}\\&+\,1200z^{218}+279z^{220}+45z^{222}+3z^{256}+3z^{260}+57z^{262}\\&+\,33z^{264}+3z^{266},\\ Wt^{\perp }_{282}(y)= & {} 1+1698990y^{4}+195873432y^{5}+\cdots .\\ Wt_{284}(z)= & {} 1+12z^{196}+264z^{198}+1332z^{200}+648z^{202}+324z^{204}+120z^{206}\\&+\,48z^{208}+720z^{210}+3252z^{212}+2472z^{214}+4044z^{216}+1680z^{218}\\&+\,1116z^{220}+216z^{222}+36z^{224}+3z^{256}+72z^{264}+24z^{266},\\ Wt^{\perp }_{284}(y)= & {} 1+1742325y^{4}+203275920y^{5}+\cdots .\\ Wt_{286}(z)= & {} 1+1089z^{200}+270z^{202}+1110z^{204}+18z^{206}+225z^{208}+5400z^{214}\\&+\,4167z^{216}+360z^{218}+2970z^{220}+675z^{224}+3z^{256}+90z^{266}+6z^{270},\\ Wt^{\perp }_{286}(y)= & {} 1+1791435y^{4}+210841560y^{5}+\cdots . \end{aligned}$$

Appendix C

At the beginning of Sect. 4, we have pointed out that [13] constructed six large caps in PG(r, 4) for \(7\le r\le 12\). These six large caps are: 756-cap in PG(7, 4), 2136-cap in PG(8, 4), 5124-cap in PG(9, 4), 15840-cap in PG(10, 4), 36084-cap in PG(11, 4) and 95256-cap in PG(12, 4). The weight polynomials of cap codes of these six caps and their dual codes are as follows:

$$\begin{aligned} Wt_{756}(z)= & {} 1+27z^{504}+450z^{516}+432z^{520}+981z^{528}+135z^{552}+6480z^{560}\\&+\,32346z^{564}+7317z^{568}+5679z^{576}+10206z^{580}+1296z^{584}\\&+\,108z^{592}+63z^{720}+9z^{744}+6z^{756},\\ Wt_{756}^{\perp }(y)= & {} 1+25841403y^{4}+\cdots .\\ Wt_{2136}(z)= & {} 1+135z^{1490}+585z^{1492}+2160z^{1500}+45z^{1504}+135z^{1506}+\cdots \\&+\,45z^{1986}+45z^{2002}+3z^{2010}+15z^{2034}.\\ Wt^{\perp }_{2136}(z)= & {} 1+393124770y^{4}+307120772160y^{5}+\cdots ,\\ Wt_{5124}(z)= & {} 1+3z^{2988}+6z^{3030}+3z^{3240}+6z^{3270}+3z^{3276}+3z^{3486}+27z^{3498}\\&+\,6z^{3504}+\cdots +24z^{4710}+3z^{4746}+3z^{4758}+45z^{4782}+15z^{4878}.\\ Wt_{5124}^{\perp }(y)= & {} 1+3378253707y^4+\cdots ,\\ Wt_{15840}(z)= & {} 1+441z^{11016}+270z^{11052}+360z^{11064}+1512z^{11080}+1080z^{11112}\\&+\cdots +27z^{12424}+3z^{14400}+90z^{14892}+30z^{15084},\\ Wt^{\perp }_{15840}(y)= & {} 1+83251482696y^{4}+417595251328704y^{5}+\cdots .\\ Wt_{36084}(z)= & {} 1+135z^{25140}+6z^{25204}+36z^{25206}+180z^{25208}+3z^{25210}+\cdots \\&+9z^{33072}+57z^{33450}+45z^{33812}+3z^{33954}+15z^{34356},\\ Wt^{\perp }_{36084}(y)= & {} 1+564963703299y^{4}+6475053526943088y^{5}+\cdots ,\\ Wt_{95256}(z)= & {} 1+18z^{63576}+378z^{65016}+144z^{65400}+864z^{65880}+3969z^{66240}\\&+\,1890z^{66528}+\cdots +1728z^{73560}+72z^{74136}+144z^{74520}+126z^{90720}\\&+\,9z^{92376}+3z^{95256},\\ Wt_{95256}^{\perp }(y)= & {} 1+8379131756670y^{4}+\cdots . \end{aligned}$$

Appendix D

The weight polynomials of the code generated by 36150-cap \(\mathbf {G}_{12,36150}\) and its dual code in PG(11, 4) are

$$\begin{aligned} Wt_{36150}(z)= & {} 1+135z^{25206}+3z^{25246}+219z^{25252}+3z^{25258}+24z^{25320}+6z^{25326}\\&+\,36z^{25332}+12z^{25338}+39z^{25344}+42z^{25348}+81z^{25350}+54z^{25354}\\&+\,159z^{25356}+60z^{25360}+57z^{25362}+30z^{25366}+24z^{25368}+18z^{25374}\\&+\,123z^{25380}+42z^{25386}+576z^{25388}+39z^{25392}+24z^{25398}+9z^{25404}\\&+\,3z^{25406}+12z^{25410}+39z^{25412}+6z^{25416}+3z^{25418}+30z^{25422}\\&+\,63z^{25428}+54z^{25434}+54z^{25440}+81z^{25446}+111z^{25452}+48z^{25458}\\&+\,60z^{25464}+108z^{25470}+99z^{25476}+144z^{25478}+333z^{25480}\\&+\,549z^{25482}+72z^{25484}+33z^{25488}+27z^{25494}+12z^{25500}+24z^{25502}\\&+\,18z^{25506}+48z^{25508}+144z^{25510}+216z^{25512}+486z^{25514}\\&+\,72z^{25516}+144z^{25518}+18z^{25520}+18z^{25526}+18z^{25532}+12z^{25534}\\&+\,24z^{25538}+24z^{25540}+12z^{25544}+9z^{25546}+9z^{25548}+9z^{25552}\\&+\,18z^{25554}+9z^{25558}+27z^{25560}+9z^{25564}+15z^{25566}+12z^{25570}\\&+\,36z^{25572}+6z^{25576}+21z^{25578}+9z^{25584}+27z^{25590}+6z^{25596}\\&+\,12z^{25602}+9z^{25608}+3z^{25620}+144z^{25638}+144z^{25640}+432z^{25642}\\&+\,72z^{25644}+288z^{25646}+3z^{25668}+72z^{25670}+72z^{25672}+222z^{25674}\\&+\,36z^{25676}+144z^{25678}+6z^{25680}+6z^{25686}+27z^{25692}+12z^{25698}\\&+\,12z^{25724}+36z^{25726}+42z^{25732}+9z^{25734}+6z^{25738}+45z^{25750}\\&+\,6z^{25756}+48z^{25758}+36z^{25764}+3z^{25770}+12z^{25800}+3z^{25806}\\ \end{aligned}$$
$$\begin{aligned}&\,\,\,\qquad \qquad \qquad +\,18z^{25812}+6z^{25818}+72z^{25822}+6z^{25824}+6z^{25830}+45z^{25848}\\&\,\,\,\qquad \qquad \qquad +\,144z^{25854}+81z^{25860}+81z^{25866}+36z^{25868}+48z^{25872}+18z^{25878}\\&\,\,\,\qquad \qquad \qquad +\,60z^{25886}+30z^{25892}+51z^{25902}+81z^{25908}+51z^{25914}\\&\,\,\,\qquad \qquad \qquad +\,30z^{25918}+99z^{25920}+15z^{25924}+93z^{25926}+48z^{25932}+51z^{25938}\\&\,\,\,\qquad \qquad \qquad +\,51z^{25944}+90z^{25950}+42z^{25956}+3z^{25962}+9z^{25968}+72z^{25990}\\&\,\,\,\qquad \qquad \qquad +\,144z^{25992}+252z^{25994}+36z^{25996}+6z^{26018}+3z^{26040}+3z^{26046}\\&\,\,\,\qquad \qquad \qquad +\,3z^{26050}+3z^{26052}+6z^{26236}+18z^{26238}+21z^{26244}+3z^{26250}\\&\,\,\,\qquad \qquad \qquad +\,36z^{26334}+6z^{26352}+33z^{26358}+33z^{26364}+3z^{26370}+21z^{26382}\\&\,\,\,\qquad \qquad \qquad +\,27z^{26388}+18z^{26394}+21z^{26400}+39z^{26406}+15z^{26412}+9z^{26418}\\&\,\,\,\qquad \qquad \qquad +\,3z^{26530}+42z^{26576}+105z^{26582}+93z^{26588}+180z^{26592}+54z^{26594}\\&\,\,\,\qquad \qquad \qquad +\,90z^{26598}+15z^{26600}+585z^{26604}+6z^{26606}+270z^{26610}+180z^{26616}\\&\,\,\,\qquad \qquad \qquad +\,216z^{26640}+144z^{26642}+324z^{26644}+396z^{26646}+54z^{26654}\\&\,\,\,\qquad \qquad \qquad +\,144z^{26656}+576z^{26658}+807z^{26660}+432z^{26662}+396z^{26664}\\&\,\,\,\qquad \qquad \qquad +366z^{26666}+216z^{26668}+99z^{26672}+147z^{26678}+108z^{26684}\\&\,\,\,\qquad \qquad \qquad +\,144z^{26686}+288z^{26688}+489z^{26690}+468z^{26692}+252z^{26694}\\&\,\,\,\qquad \qquad \qquad +\,9z^{26696}+147z^{26704}+417z^{26710}+477z^{26716}+96z^{26720}\\&\,\,\,\qquad \qquad \qquad +\,279z^{26722}+123z^{26726}+153z^{26728}+90z^{26732}+117z^{26734}\\&\,\,\,\qquad \qquad \qquad +\,42z^{26736}+42z^{26738}+87z^{26740}+111z^{26742}+9z^{26744}+42z^{26746}\\&\,\,\,\qquad \qquad \qquad +\,105z^{26748}+24z^{26752}+54z^{26754}+39z^{26758}+87z^{26760}+57z^{26764} \end{aligned}$$
$$\begin{aligned}&+\,111z^{26766}+432z^{26768}+336z^{26770}+726z^{26772}+792z^{26774}\\&+\,711z^{26776}+2466z^{26778}+3276z^{26780}+1956z^{26782}+696z^{26784}\\&+\,1764z^{26786}+2961z^{26788}+1698z^{26790}+2268z^{26792}+5655z^{26794}\\&+\,3492z^{26796}+324z^{26798}+1221z^{26800}+1656z^{26802}+1476z^{26804}\\&+\,1110z^{26806}+432z^{26808}+720z^{26810}+1515z^{26812}+1329z^{26814}\\&+\,1908z^{26816}+3264z^{26818}+3420z^{26820}+1908z^{26822}+1104z^{26824}\\&+\,834z^{26826}+540z^{26828}+822z^{26830}+387z^{26832}+609z^{26836}\\&+\,894z^{26838}+252z^{26840}+399z^{26842}+1902z^{26844}+360z^{26846}\\&+\,1200z^{26848}+987z^{26850}+504z^{26852}+498z^{26854}+558z^{26856}\\&+\,180z^{26860}+762z^{26862}+63z^{26864}+1884z^{26866}+4257z^{26868}\\&+\,219z^{26870}+18z^{26872}+4131z^{26874}+7587z^{26876}+108z^{26878}\\&+\,372z^{26880}+423z^{26882}+216z^{26884}+348z^{26886}+174z^{26888}\\&+\,435z^{26892}+234z^{26894}+219z^{26896}+1398z^{26898}+2340z^{26900}\\&+\,540z^{26902}+1923z^{26904}+9858z^{26906}+16860z^{26908}+6060z^{26910}\\&+\,3408z^{26912}+8499z^{26914}+12606z^{26916}+9693z^{26918}+8547z^{26920}\\&+\,17154z^{26922}+10989z^{26924}+3456z^{26926}+5004z^{26928}+5808z^{26930}\\&+\,2646z^{26932}+2817z^{26934}+2691z^{26936}+5724z^{26938}+11673z^{26940}\\&+\,4692z^{26942}+4311z^{26944}+7143z^{26946}+6204z^{26948}+3609z^{26950}\\&+\,3528z^{26952}+3798z^{26954}+2313z^{26956}+2823z^{26958}+1134z^{26960}\\&+\,1404z^{26962}+2886z^{26964}+1950z^{26966}+3888z^{26968}+6723z^{26970}\\ \end{aligned}$$
$$\begin{aligned}&+\,9801z^{26972}+8460z^{26974}+12468z^{26976}+29799z^{26978}\\&+\,34686z^{26980}+26046z^{26982}+12531z^{26984}+40473z^{26986}\\&+\,52311z^{26988}+33336z^{26990}+25467z^{26992}+49965z^{26994}\\&+\,42960z^{26996}+24624z^{26998}+35613z^{27000}+50139z^{27002}\\&+\,35523z^{27004}+10953z^{27006}+11805z^{27008}+21216z^{27010}\\&+\,29892z^{27012}+23826z^{27014}+35838z^{27016}+84306z^{27018}\\&+\,90804z^{27020}+58332z^{27022}+52728z^{27024}+90960z^{27026}\\&+\,90555z^{27028}+77877z^{27030}+52029z^{27032}+69576z^{27034}\\&+\,59769z^{27036}+18564z^{27038}+16521z^{27040}+37767z^{27042}\\&+\,42246z^{27044}+35976z^{27046}+45645z^{27048}+62826z^{27050}\\&+\,67551z^{27052}+61803z^{27054}+46197z^{27056}+78516z^{27058}\\&+\,85173z^{27060}+53997z^{27062}+37485z^{27064}+62445z^{27066}\\&+\,66198z^{27068}+36996z^{27070}+42264z^{27072}+75888z^{27074}\\&+\,78588z^{27076}+63609z^{27078}+57777z^{27080}+99816z^{27082}\\&+\,116370z^{27084}+69906z^{27086}+69270z^{27088}+145860z^{27090}\\&+\,182178z^{27092}+137934z^{27094}+127602z^{27096}+299940z^{27098}\\&+\,394902z^{27100}+351789z^{27102}+361329z^{27104}+531045z^{27106} \end{aligned}$$
$$\begin{aligned}&+\,627573z^{27108}+670626z^{27110}+931413z^{27112}+1167318z^{27114}\\&+\,666327z^{27116}+252957z^{27118}+396276z^{27120}+542769z^{27122}\\&+\,432627z^{27124}+289716z^{27126}+195300z^{27128}+255552z^{27130}\\&+\,302040z^{27132}+156429z^{27134}+164088z^{27136}+284487z^{27138}\\&+\,230307z^{27140}+108099z^{27142}+133434z^{27144}+257226z^{27146}\\&+\,244050z^{27148}+194319z^{27150}+104685z^{27152}+178569z^{27154}\\&+\,195930z^{27156}+118290z^{27158}+102033z^{27160}+154602z^{27162}\\&+\,132105z^{27164}+51705z^{27166}+45687z^{27168}+59070z^{27170}\\&+\,53436z^{27172}+46008z^{27174}+44466z^{27176}+106194z^{27178}\\&+\,128205z^{27180}+75735z^{27182}+52125z^{27184}+92301z^{27186}\\&+\,73428z^{27188}+39276z^{27190}+37107z^{27192}+47838z^{27194}\\&+\,29838z^{27196}+7206z^{27198}+11448z^{27200}+16272z^{27202}\\&+\,19356z^{27204}+14925z^{27206}+7203z^{27208}+13557z^{27210}\\&+\,16551z^{27212}+11829z^{27214}+19467z^{27216}+37839z^{27218}\\&+\,35889z^{27220}+15300z^{27222}+8028z^{27224}+8325z^{27226}\\&+\,3975z^{27228}+1485z^{27230}+930z^{27232}+336z^{27234}+855z^{27236}\\&+\,1410z^{27238}+336z^{27240}+180z^{27242}+1821z^{27244}+1128z^{27246}\\&+\,3285z^{27248}+6294z^{27250}+6480z^{27252}+2925z^{27254}+1071z^{27256}\\ \end{aligned}$$
$$\begin{aligned}&+\,720z^{27258}+666z^{27260}+2646z^{27262}+588z^{27264}+2286z^{27266}\\&+\,3357z^{27268}+981z^{27270}+1047z^{27272}+2310z^{27274}+2103z^{27276}\\&+\,1485z^{27278}+2217z^{27280}+2220z^{27282}+459z^{27284}+870z^{27286}\\&+\,228z^{27288}+633z^{27290}+1362z^{27292}+1059z^{27294}+732z^{27296}\\&+\,2268z^{27298}+3399z^{27300}+1518z^{27302}+1770z^{27304}+4122z^{27306}\\&+\,2952z^{27308}+813z^{27310}+1368z^{27312}+2160z^{27314}+1494z^{27316}\\&+\,1167z^{27318}+432z^{27320}+750z^{27322}+1839z^{27324}+747z^{27326}\\&+\,468z^{27328}+957z^{27330}+693z^{27332}+756z^{27334}+582z^{27336}\\&+\,837z^{27338}+324z^{27340}+474z^{27342}+210z^{27344}+420z^{27348}\\&+\,453z^{27350}+252z^{27352}+471z^{27354}+1257z^{27356}+216z^{27358}\\&+\,429z^{27360}+207z^{27362}+42z^{27364}+372z^{27366}+771z^{27368}\\&+\,54z^{27370}+378z^{27372}+675z^{27374}+60z^{27376}+147z^{27378}\\&+\,588z^{27380}+30z^{27382}+183z^{27384}+1281z^{27386}+1980z^{27388}\\&+\,2748z^{27390}+210z^{27392}+2070z^{27394}+5739z^{27396}+96z^{27398}\\&+\,90z^{27400}+312z^{27402}+186z^{27404}+168z^{27406}+468z^{27408}\\&+\,144z^{27410}+411z^{27412}+597z^{27414}+396z^{27416}+2274z^{27418}\\&+\,4596z^{27420}+2688z^{27422}+2292z^{27424}+4842z^{27426}+8445z^{27428}\\&+\,5727z^{27430}+4152z^{27432}+7605z^{27434}+4143z^{27436}+48z^{27438}\\&+\,840z^{27440}+90z^{27444}+1452z^{27446}+1548z^{27448}+1944z^{27450}\\ \end{aligned}$$
$$\begin{aligned}&+\,4857z^{27452}+1962z^{27454}+1413z^{27456}+2910z^{27458}+2112z^{27460}\\&+\,846z^{27462}+1134z^{27464}+1680z^{27466}+327z^{27468}+1113z^{27470}\\&+\,315z^{27472}+3z^{27474}+813z^{27476}+828z^{27478}+399z^{27480}\\&+\,837z^{27482}+1257z^{27484}+651z^{27486}+531z^{27488}+807z^{27490}\\&+\,237z^{27492}+429z^{27494}+606z^{27496}+633z^{27498}+162z^{27500}\\&+\,558z^{27502}+819z^{27504}+582z^{27506}+630z^{27508}+2550z^{27510}\\&+\,2133z^{27512}+2718z^{27514}+2913z^{27516}+1233z^{27518}+1377z^{27520}\\&+\,3420z^{27522}+1854z^{27524}+1035z^{27526}+987z^{27528}+1431z^{27530}\\&+\,180z^{27532}+12z^{27534}+507z^{27536}+288z^{27538}+648z^{27540}\\&+\,1365z^{27542}+1548z^{27544}+2736z^{27546}+4416z^{27548}+3786z^{27550}\\&+\,3852z^{27552}+5406z^{27554}+7068z^{27556}+5040z^{27558}+4860z^{27560}\\&+\,4962z^{27562}+792z^{27564}+60z^{27566}+540z^{27568}+144z^{27570}\\&+\,414z^{27572}+825z^{27574}+288z^{27576}+990z^{27578}+1575z^{27580}\\&+\,1347z^{27582}+1950z^{27584}+3444z^{27586}+3648z^{27588}+1584z^{27590}\\&+\,1266z^{27592}+1887z^{27594}+504z^{27596}+1197z^{27598}+186z^{27600}\\&+\,492z^{27604}+222z^{27606}+114z^{27610}+192z^{27612}+321z^{27614}\\&+\,903z^{27616}+1143z^{27618}+1137z^{27620}+642z^{27622}+252z^{27624}\\&+\,243z^{27626}+216z^{27628}+444z^{27630}+18z^{27632}+84z^{27634}\\ \end{aligned}$$
$$\begin{aligned}&\,\,+\,237z^{27636}+18z^{27638}+18z^{27640}+57z^{27642}+18z^{27644}+123z^{27648}\\&\,\,+\,24z^{27650}+123z^{27654}+12z^{27656}+90z^{27660}+42z^{27666}+9z^{27672}\\&\,\,+\,30z^{27710}+15z^{27716}+288z^{27718}+288z^{27720}+864z^{27722}\\&\,\,+\,144z^{27724}+576z^{27726}+36z^{27742}+9z^{27744}+42z^{27748}+234z^{27750}\\&\,\,+\,144z^{27752}+438z^{27754}+183z^{27756}+288z^{27758}+87z^{27762}\\&\,\,+\,69z^{27768}+198z^{27774}+165z^{27780}+69z^{27786}+15z^{27792}+27z^{27798}\\&\,\,+\,138z^{27804}+36z^{27806}+54z^{27810}+42z^{27812}+66z^{27816}+6z^{27818}\\&\,\,+\,177z^{27822}+240z^{27828}+132z^{27834}+120z^{27838}+195z^{27840}\\&\,\,+\,60z^{27844}+264z^{27846}+261z^{27852}+99z^{27858}+156z^{27864}\\&\,\,+\,351z^{27870}+231z^{27876}+84z^{27882}+36z^{27884}+33z^{27888}\\&\,\,+\,15z^{27894}+108z^{27902}+42z^{27908}+54z^{27914}+72z^{27916}+60z^{27920}\\&\,\,+\,30z^{27926}+120z^{27966}+60z^{27972}+60z^{27998}+30z^{28004}+72z^{28006}\\&\,\,+\,144z^{28008}+252z^{28010}+36z^{28012}+144z^{28038}+288z^{28040}\\&\,\,+\,504z^{28042}+72z^{28044}+9z^{28098}+21z^{28224}+39z^{28230}+39z^{28236}\\&\,\,+\,24z^{28242}+12z^{28248}+18z^{28254}+21z^{28260}+3z^{28266}+3z^{28278}\\&\,\,+\,21z^{28284}+36z^{28286}+30z^{28290}+42z^{28292}+27z^{28296}+6z^{28298}\\&\,\,+\,45z^{28302}+57z^{28308}+54z^{28314}+36z^{28320}+57z^{28326}+48z^{28332}\\&\,\,+\,12z^{28338}+15z^{28344}+18z^{28350}+27z^{28356}+33z^{28368}+27z^{28374}\\&\,\,+\,12z^{28380}+18z^{28386}+3z^{31848}+3z^{32520}+12z^{33120}+6z^{33126} \end{aligned}$$
$$\begin{aligned}&+\,39z^{33132}+18z^{33138}+12z^{33144}+3z^{33510}+45z^{33878}+3z^{34014}\\&+\,15z^{34422},\\ Wt^{\perp }_{36150}(y)= & {} 1+553592502981y^4+6606240021787176y^5+\cdots . \end{aligned}$$

Appendix E

The [15816, 11, 10992]-cap code given in Sect. 6.4 has weight polynomial

$$\begin{aligned} Wt_{15816}(z)= & {} 1+72z^{10992}+63z^{10998}+36z^{11004}+36z^{11016}+171z^{11028}+27z^{11034}\\&+\,180z^{11040}+72z^{11046}+180z^{11048}+72z^{11052}+108z^{11056}\\&+\,432z^{11060}+297z^{11062}+432z^{11064}+108z^{11068}+252z^{11088}\\&+\,216z^{11094}+540z^{11096}+72z^{11100}+1296z^{11124}+324z^{11126}\\&+\,54z^{11136}+84z^{11184}+9z^{11190}+12z^{11208}+45z^{11220}+9z^{11226}\\&+\,108z^{11248}+27z^{11254}+144z^{11256}+12z^{11376}+387z^{11604}\\&+\,135z^{11610}+540z^{11616}+432z^{11620}+36z^{11652}+216z^{11708}\\&+\,648z^{11714}+2160z^{11716}+648z^{11720}+2592z^{11744}+12636z^{11746}\\&+\,27216z^{11748}+1512z^{11756}+2592z^{11760}+6156z^{11762}+15552z^{11764}\\&+\,1512z^{11768}+2808z^{11772}+1944z^{11778}+2160z^{11780}+1944z^{11784}\\&+\,69z^{11796}+2160z^{11800}+45z^{11802}+90720z^{11804}+116640z^{11806}\\&+\,125208z^{11808}+37908z^{11810}+48096z^{11812}+11880z^{11814}\\&+\,11124z^{11816}+97632z^{11820}+77760z^{11822}+57456z^{11824}\\&+\,28836z^{11826}+38016z^{11828}+15912z^{11832}+12960z^{11836}\\&+\,12960z^{11838}+4320z^{11840}+6060z^{11844}+6480z^{11848}+5040z^{11850}\\&+\,163260z^{11856}+347328z^{11858}+414729z^{11860}+86328z^{11862}\\&+\,46188z^{11864}+405z^{11866}+330696z^{11868}+349920z^{11870}\\&+\,358668z^{11872}+146880z^{11874}+203472z^{11876}+23112z^{11878}\\&+\,37116z^{11880}+209736z^{11884}+233280z^{11886}+129600z^{11888}\\&+\,576z^{11892}+38880z^{11900}+38880z^{11902}+13005z^{11904}+108z^{11908}\\&+\,2160z^{11912}+3780z^{11920}+3240z^{11926}+5940z^{11928}+1080z^{11932}\\&+\,72z^{11964}+135z^{11968}+216z^{11970}+720z^{11972}+216z^{11976}\\&+\,3672z^{12000}+4212z^{12002}+9072z^{12004}+648z^{12006}+2268z^{12008}\\&+\,720z^{12012}+1080z^{12016}+2052z^{12018}+5184z^{12020}+189z^{12022}\\&+\,648z^{12024}+1044z^{12028}+648z^{12034}+1776z^{12036}+756z^{12040}\\&+\,336z^{12042}+1092z^{12048}+207z^{12052}+648z^{12054}+1620z^{12056}\\&+\,135z^{12058}+216z^{12060}+9072z^{12064}+12636z^{12066}+14688z^{12068}\\&+\,3672z^{12076}+5076z^{12080}+6156z^{12082}+8208z^{12084}+891z^{12086}\\&+\,2808z^{12088}+324z^{12092}+18z^{12096}+36z^{12100}+3888z^{12148} \end{aligned}$$
$$\begin{aligned}&+\,972z^{12150}+252z^{12208}+27z^{12214}+36z^{12232}+324z^{12272}\\&+\,81z^{12278}+432z^{12280}+36z^{12400}+3z^{14400}+57z^{14868}+9z^{14874}\\&+\,36z^{14880}+15z^{15060}+3z^{15066}. \end{aligned}$$

The weight polynomial of its dual is

$$\begin{aligned} Wt^{\perp }_{15816}(y)=1+82032878250y^{4}+\cdots . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Fu, Q., Guo, L. et al. Construction of quantum caps in projective space PG(r, 4) and quantum codes of distance 4. Quantum Inf Process 15, 689–720 (2016). https://doi.org/10.1007/s11128-015-1204-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1204-9

Keywords

Navigation