Skip to main content
Log in

Genuine secret-sharing states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum secret sharing allows each player to have classical information for secret sharing in quantum mechanical ways. In this work, we construct a class of quantum states on which players can quantumly perform secret-sharing secure against dishonest players as well as eavesdropper. We here call them the genuine secret-sharing states. In addition, we show that if N players share an N-party genuine secret-sharing state, then arbitrary M players out of the total players can share an M-party genuine secret-sharing state by means of local operations and classical communication on the state, where \(N > M \ge 2\). We also define the distillable rate with respect to the genuine secret-sharing state and explain the connection between the distillable rate and the relative entropy of entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blakley, G.R.: Safeguarding cryptographic keys. Proc. Natl. Comput. Conf. 48, 313 (1979)

    Google Scholar 

  2. Shamir, A.: How to share s secret. Commun. ACM 22, 612 (1979)

    Article  MathSciNet  Google Scholar 

  3. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  4. Greenberger, D.M., Horne, M.A., Zeilinger, A.: Going Beyond Bell’s Theorem, Bell’s Theorem, Quantum Theory, and Conceptions of the Universe. In: Kafatos, M. (eds) p. 69. Kluwer, Dordrecht (1989)

  5. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  6. Horodecki, K., Horodecki, M., Horodecki, P., Oppenheim, J.: Secure key from bound entanglement. Phys. Rev. Lett. 94, 160502 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  7. Horodecki, K., Horodecki, M., Horodecki, P., Oppenheim, J.: General paradigm for distilling classical key from quantum states. IEEE Trans. Inf. Theory 55, 1898 (2009)

    Article  MathSciNet  Google Scholar 

  8. Chi, D.P., Choi, J.W., Kim, J.S., Kim, T., Lee, S.: Quantum states for perfectly secure secret sharing. Phys. Rev. A 78, 012351 (2008)

    Article  ADS  Google Scholar 

  9. Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  10. Vedral, V., Plenio, M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57, 1619 (1998)

    Article  ADS  Google Scholar 

  11. Hughston, L.P., Jozsa, R., Wootters, W.K.: A complete classification of quantum ensembles having a given density matrix. Phys. Lett. A 183, 14 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  12. Holevo, A.S.: Bounds for the quantity of information transmitted by a quantum communication channel. Probl. Peredachi Inf. 9, 3 (1973)

    MATH  Google Scholar 

  13. Devetak, I., Winter, A.: Distillation of secret key and entanglement from quantum states. Proc. R. Soc. A 461, 207 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  14. Kogias, I., Xiang, Y., He, Q., Adesso, G.: Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 95, 012315 (2017)

    Article  ADS  Google Scholar 

  15. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  16. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  17. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)

    Article  ADS  Google Scholar 

  18. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  19. Lee, S., Joo, J., Kim, J.: Teleportation capability, distillability, and nonlocality on three-qubit states. Phys. Rev. A 76, 012311 (2007)

    Article  ADS  Google Scholar 

  20. Choi, M., Lee, S.: in preparation

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Science and ICT (Grant No. NRF-2019R1A2C1006337) and the Ministry of Science and ICT, Korea, under the Information Technology Research Center support program (Grant No. IITP-2020-2018-0-01402) supervised by the Institute for Information and Communications Technology Promotion. S.L. acknowledges support from Research Leave Program of Kyung Hee University in 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soojoon Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, M., Lee, S. Genuine secret-sharing states. Quantum Inf Process 20, 47 (2021). https://doi.org/10.1007/s11128-021-02988-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-02988-3

Keywords

Mathematics Subject Classification

Navigation