Skip to main content
Log in

On Steane-enlargement of quantum codes from Cartesian product point sets

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this work, we study quantum error-correcting codes obtained by using Steane-enlargement. We apply this technique to certain codes defined from Cartesian products previously considered by Galindo et al. (IEEE Trans Inf Theory 64(4):2444–2459, 2018. https://doi.org/10.1109/TIT.2017.2755682). We give bounds on the dimension increase obtained via enlargement, and additionally give an algorithm to compute the true increase. A number of examples of codes are provided, and their parameters are compared to relevant codes in the literature, which shows that the parameters of the enlarged codes are advantageous. Furthermore, comparison with the Gilbert–Varshamov bound for stabilizer quantum codes shows that several of the enlarged codes match or exceed the parameters promised by the bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. In their notation, the situation in consideration has \(J=\emptyset \) and \(p\mid N_j\) for each j.

References

  1. Bierbrauer, J., Edel, Y.: Quantum twisted codes. J. Comb. Des. 8(3), 174–188 (2000). https://doi.org/10.1002/(SICI)1520-6610(2000)8:3<174::AID-JCD3>3.0.CO;2-T

    Article  MathSciNet  MATH  Google Scholar 

  2. Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998). https://doi.org/10.1109/18.681315

    Article  MathSciNet  MATH  Google Scholar 

  3. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996). https://doi.org/10.1103/PhysRevA.54.1098

    Article  ADS  Google Scholar 

  4. Christensen, R.B., Geil, O.: Steane-enlargement of quantum codes from the Hermitian function field. Des. Codes Cryptogr. (2020). https://doi.org/10.1007/s10623-019-00709-7

    Article  Google Scholar 

  5. Edel, Y.: Some good quantum twisted codes. https://www.mathi.uni-heidelberg.de/~yves/Matritzen/QTBCH/QTBCHIndex.html. Accessed on 13 Nov 2019

  6. Feng, K., Ma, Z.: A finite Gilbert–Varshamov bound for pure stabilizer quantum codes. IEEE Trans. Inf. Theory 50(12), 3323–3325 (2004). https://doi.org/10.1109/TIT.2004.838088

    Article  MathSciNet  MATH  Google Scholar 

  7. Galindo, C., Geil, O., Hernando, F., Ruano, D.: Improved constructions of nested code pairs. IEEE Trans. Inf. Theory 64(4), 2444–2459 (2018). https://doi.org/10.1109/TIT.2017.2755682

    Article  MathSciNet  MATH  Google Scholar 

  8. Galindo, C., Hernando, F., Ruano, D.: Stabilizer quantum codes from J-affine variety codes and a new Steane-like enlargement. Quantum Inf. Process. 14(9), 3211–3231 (2015). https://doi.org/10.1007/s11128-015-1057-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Galindo, C., Hernando, F., Ruano, D.: Classical and quantum evaluation codes at the trace roots. IEEE Trans. Inf. Theory 65(4), 2593–2602 (2019). https://doi.org/10.1109/TIT.2018.2868442

    Article  MathSciNet  MATH  Google Scholar 

  10. Geil, O., Høholdt, T.: On hyperbolic codes. In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 14th International Symposium, AAECC-14, Melbourne, Australia November 26-30, 2001, Proceedings, pp. 159–171 (2001). https://doi.org/10.1007/3-540-45624-4_17

  11. Hamada, M.: Concatenated quantum codes constructible in polynomial time: efficient decoding and error correction. IEEE Trans. Inf. Theory 54(12), 5689–5704 (2008). https://doi.org/10.1109/TIT.2008.2006416

    Article  MathSciNet  MATH  Google Scholar 

  12. Ioffe, L., Mézard, M.: Asymmetric quantum error-correcting codes. Phys. Rev. A 75, 032345 (2007). https://doi.org/10.1103/PhysRevA.75.032345

    Article  ADS  MathSciNet  Google Scholar 

  13. Jin, L., Xing, C.: Quantum Gilbert–Varshamov bound through symplectic self-orthogonal codes. In: 2011 IEEE International Symposium on Information Theory Proceedings, pp. 455–458 (2011). https://doi.org/10.1109/ISIT.2011.6034167

  14. Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52(11), 4892–4914 (2006). https://doi.org/10.1109/TIT.2006.883612

    Article  MathSciNet  MATH  Google Scholar 

  15. Knill, E., Laflamme, R.: Theory of quantum error-correcting codes. Phys. Rev. A 55, 900–911 (1997). https://doi.org/10.1103/PhysRevA.55.900

    Article  ADS  MathSciNet  Google Scholar 

  16. La Guardia, G.G., Alves, M.M.S.: On cyclotomic cosets and code constructions. Linear Algebra Appl. 488, 302–319 (2016). https://doi.org/10.1016/j.laa.2015.09.034

    Article  MathSciNet  MATH  Google Scholar 

  17. La Guardia, G.G., Palazzo, R.: Constructions of new families of nonbinary CSS codes. Discrete Math. 310(21), 2935–2945 (2010). https://doi.org/10.1016/j.disc.2010.06.043

    Article  MathSciNet  MATH  Google Scholar 

  18. La Guardia, G.G., Pereira, F.R.F.: Good and asymptotically good quantum codes derived from algebraic geometry. Quantum Inf. Process. 16(6), 165 (2017). https://doi.org/10.1007/s11128-017-1618-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Li, R., Wang, J., Liu, Y., Guo, G.: New quantum constacyclic codes. Quantum Inf. Process. 18(5), 127 (2019). https://doi.org/10.1007/s11128-019-2242-5

    Article  ADS  MathSciNet  Google Scholar 

  20. Ling, S., Luo, J., Xing, C.: Generalization of Steane’s enlargement construction of quantum codes and applications. IEEE Trans. Inf. Theory 56(8), 4080–4084 (2010). https://doi.org/10.1109/TIT.2010.2050828

    Article  MathSciNet  MATH  Google Scholar 

  21. López, H.H., Matthews, G.L., Soprunov, I.: Monomial-Cartesian codes and their duals, with applications to LCD codes, quantum codes, and locally recoverable codes. Des. Codes Cryptogr. (2020). https://doi.org/10.1007/s10623-020-00726-x

  22. Lv, J., Li, R., Wang, J.: New binary quantum codes derived from one-generator quasi-cyclic codes. IEEE Access 7, 85782–85785 (2019). https://doi.org/10.1109/ACCESS.2019.2923800

    Article  Google Scholar 

  23. Munuera, C., Tenório, W., Torres, F.: Quantum error-correcting codes from algebraic geometry codes of Castle type. Quantum Inf. Process. 15(10), 4071–4088 (2016). https://doi.org/10.1007/s11128-016-1378-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Rains, E.M.: Nonbinary quantum codes. IEEE Trans. Inf. Theory 45(6), 1827–1832 (1999). https://doi.org/10.1109/18.782103

    Article  MathSciNet  MATH  Google Scholar 

  25. Shi, X., Yue, Q., Wu, Y.: New quantum MDS codes with large minimum distance and short length from generalized Reed–Solomon codes. Discrete Math. 342(7), 1989–2001 (2019). https://doi.org/10.1016/j.disc.2019.03.019

    Article  MathSciNet  MATH  Google Scholar 

  26. Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE Computer Society, Los Alamitos, CA, USA (1994). https://doi.org/10.1109/SFCS.1994.365700

  27. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995). https://doi.org/10.1103/PhysRevA.52.R2493

    Article  ADS  Google Scholar 

  28. Simon, D.: On the power of quantum computation. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 116–123. IEEE Computer Society, Los Alamitos, CA, USA (1994). https://doi.org/10.1109/SFCS.1994.365701

  29. Steane, A.: Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 452(1954), 2551–2577 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  30. Steane, A.M.: Enlargement of Calderbank–Shor–Steane quantum codes. IEEE Trans. Inf. Theory 45(7), 2492–2495 (1999). https://doi.org/10.1109/18.796388

    Article  MathSciNet  MATH  Google Scholar 

  31. Tian, F., Zhu, S.: Some new quantum MDS codes from generalized Reed–Solomon codes. Discrete Math. 342(12), 111593 (2019). https://doi.org/10.1016/j.disc.2019.07.009

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Diego Ruano for delightful discussions in relation to this work. In addition, the authors thank the anonymous reviewers for their comments, which led to a better manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Bødker Christensen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christensen, R.B., Geil, O. On Steane-enlargement of quantum codes from Cartesian product point sets. Quantum Inf Process 19, 192 (2020). https://doi.org/10.1007/s11128-020-02691-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02691-9

Keywords

Mathematics Subject Classification

Navigation