Skip to main content
Log in

Coherence-based measure of quantumness in (non-) Markovian channels

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We make a detailed analysis of quantumness for various quantum noise channels, both Markovian and non-Markovian. The noise channels considered include dephasing channels like random telegraph noise, non-Markovian dephasing and phase damping, as well as the non-dephasing channels such as generalized amplitude damping and Unruh channels. We make use of a recently introduced witness for quantumness based on the square \(l_1\) norm of coherence. It is found that the increase in the degree of non-Markovianity increases the quantumness of the channel. This may be attributed to the fact that the non-Markovian dynamics involves the generation of entanglement between the system and environment degrees of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hu, M.-L., Hu, X., Wang, J., Yi, P., Zhang, Y.-R., Fan, H.: Quantum coherence and geometric quantum discord. Phys. Rep. 762, 1–100 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  3. Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental quantum cryptography. J. Cryptol. 5(1), 3–28 (1992)

    Article  Google Scholar 

  4. Grosshans, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using Gaussian-modulated coherent states. Nature 421(6920), 238 (2003)

    Article  ADS  Google Scholar 

  5. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993). https://doi.org/10.1103/PhysRevLett.70.1895

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89(4), 041003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  7. Radhakrishnan, C., Ding, Z., Shi, F., Du, J., Byrnes, T.: Basis-independent quantum coherence and its distribution (2018). arXiv preprint arXiv:1805.09263

  8. Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766–2788 (1963). https://doi.org/10.1103/PhysRev.131.2766

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277–279 (1963). https://doi.org/10.1103/PhysRevLett.10.277

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Almeida, J., De Groot, P.C., Huelga, S.F., Liguori, A.M., Plenio, M.B.: Probing quantum coherence in qubit arrays. J. Phys. B At. Mol. Opt. Phys. 46(10), 104002 (2013)

    Article  ADS  Google Scholar 

  11. Lloyd, S.: Quantum coherence in biological systems. J. Phys. Conf. Ser. 302, 012037 (2011)

    Article  Google Scholar 

  12. Bhattacharya, S., Banerjee, S., Pati, A.K.: Evolution of coherence and non-classicality under global environmental interaction. Quantum Inf. Process. 17(9), 236 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  13. Singh, U., Bera, M.N., Dhar, H.S., Pati, A.K.: Maximally coherent mixed states: complementarity between maximal coherence and mixedness. Phys. Rev. A 91, 052115 (2015). https://doi.org/10.1103/PhysRevA.91.052115

    Article  ADS  Google Scholar 

  14. Yadin, B., Vedral, V.: General framework for quantum macroscopicity in terms of coherence. Phys. Rev. A 93(2), 022122 (2016)

    Article  ADS  Google Scholar 

  15. Alok, A.K., Banerjee, S., Sankar, S.U.: Quantum correlations in terms of neutrino oscillation probabilities. Nucl. Phys. B 909, 65–72 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  16. Dixit, K., Naikoo, J., Banerjee, S., Alok, A.K.: Study of coherence and mixedness in meson and neutrino systems. Eur. Phys. J. C 79(2), 96 (2019)

    Article  ADS  Google Scholar 

  17. Mani, A., Karimipour, V.: Cohering and decohering power of quantum channels. Phys. Rev. A 92, 032331 (2015). https://doi.org/10.1103/PhysRevA.92.032331

    Article  ADS  Google Scholar 

  18. Maniscalco, S., Olivares, S., Paris, M.G.A.: Entanglement oscillations in non-Markovian quantum channels. Phys. Rev. A 75, 062119 (2007). https://doi.org/10.1103/PhysRevA.75.062119

    Article  ADS  Google Scholar 

  19. Banerjee, S.: Open Quantum Systems: Dynamics of Nonclassical Evolution. Springer, Berlin (2018)

    Book  Google Scholar 

  20. Braunstein, S.L., Fuchs, C.A., Kimble, H.J.: Criteria for continuous-variable quantum teleportation. J. Mod. Opt. 47(2–3), 267–278 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  21. Horodecki, R., Horodecki, P., Horodecki, M.: Violating bell inequality by mixed spin-12 states: necessary and sufficient condition. Phys. Lett. A 200(5), 340–344 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  22. Horodecki, R., Horodecki, M., Horodecki, P.: Teleportation, Bell’s inequalities and inseparability. Phys. Lett. A 222(1–2), 21–25 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  23. Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60(3), 1888 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  24. Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41(12), 2315–2323 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  25. Saulo, V.M., Cunha, M.T.: Quantifying quantum invasiveness. Phys. Rev. A 99, 022124 (2019). https://doi.org/10.1103/PhysRevA.99.022124

    Article  ADS  Google Scholar 

  26. Shahbeigi, F., Akhtarshenas, S.J.: Quantumness of quantum channels. Phys. Rev. A 98, 042313 (2018). https://doi.org/10.1103/PhysRevA.98.042313

    Article  ADS  Google Scholar 

  27. Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  28. Holevo, A.S.: Quantum Systems, Channels, Information: A Mathematical Introduction, vol. 16. Walter de Gruyter, Berlin (2012)

    Book  Google Scholar 

  29. Zhao, M.-J., Ma, T., Quan, Q., Fan, H., Pereira, R.: \({l}_{1}\)-norm coherence of assistance. Phys. Rev. A 100, 012315 (2019). https://doi.org/10.1103/PhysRevA.100.012315

    Article  ADS  MathSciNet  Google Scholar 

  30. Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016). https://doi.org/10.1103/PhysRevLett.116.150502

    Article  ADS  Google Scholar 

  31. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 439(1907), 553–558 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  32. Hillery, M.: Coherence as a resource in decision problems: the Deutsch–Jozsa algorithm and a variation. Phys. Rev. A 93, 012111 (2016). https://doi.org/10.1103/PhysRevA.93.012111

    Article  ADS  Google Scholar 

  33. Shi, H.-L., Liu, S.-Y., Wang, X.-H., Yang, W.-L., Yang, Z.-Y., Fan, H.: Coherence depletion in the Grover quantum search algorithm. Phys. Rev. A 95, 032307 (2017). https://doi.org/10.1103/PhysRevA.95.032307

    Article  ADS  MathSciNet  Google Scholar 

  34. Anand, N., Pati, A.K.: Coherence and entanglement monogamy in the discrete analogue of analog Grover search (2016). arXiv:1611.04542

  35. Bu, K., Kumar, A., Zhang, L., Wu, J.: Cohering power of quantum operations. Phys. Lett. A. 381(19), 1670–1676 (2017). https://doi.org/10.1016/j.physleta.2017.03.022

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Zhu, H., Hayashi, M., Chen, L.: Axiomatic and operational connections between the \({l}_{1}\)-norm of coherence and negativity. Phys. Rev. A 97, 022342 (2018). https://doi.org/10.1103/PhysRevA.97.022342

    Article  ADS  MathSciNet  Google Scholar 

  37. John, W.: The Theory of Quantum Information. Cambridge University Press, Cambridge (2018)

    MATH  Google Scholar 

  38. Daffer, S., Wódkiewicz, K., Cresser, J.D., McIver, J.K.: Depolarizing channel as a completely positive map with memory. Phys. Rev. A 70, 010304 (2004). https://doi.org/10.1103/PhysRevA.70.010304

    Article  ADS  Google Scholar 

  39. Kumar, N.P., Banerjee, S., Srikanth, R., Jagadish, V., Petruccione, F.: Non-Markovian evolution: a quantum walk perspective. Open Syst. Inf. Dyn. 25, 1850014 (2018). https://doi.org/10.1142/S1230161218500142

    Article  MATH  Google Scholar 

  40. Banerjee. S., Kumar, N.P., Srikanth, R., Jagadish, V., Petruccione, F.: Non-Markovian dynamics of discrete-time quantum walks (2017). arXiv:1703.08004

  41. Shrikant, U., Srikanth, R., Banerjee, S.: Non-Markovian dephasing and depolarizing channels. Phys. Rev. A 98(3), 032328 (2018)

    Article  ADS  Google Scholar 

  42. Banerjee, S., Ghosh, R.: Dynamics of decoherence without dissipation in a squeezed thermal bath. J. Phys. A Math. Theor. 40(45), 13735 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  43. Srikanth, R., Banerjee, S.: Squeezed generalized amplitude damping channel. Phys. Rev. A 77(1), 012318 (2008)

    Article  ADS  Google Scholar 

  44. Omkar, S., Srikanth, R., Banerjee, S.: Dissipative and non-dissipative single-qubit channels: dynamics and geometry. Quantum Inf. Process. 12(12), 3725–3744 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  45. Omkar, S., Banerjee, S., Srikanth, R., Alok, A.K.: The unruh effect interpreted as a quantum noise channel. Quantum Inf. Comput. 16, 0757 (2016)

    MathSciNet  Google Scholar 

  46. Srikanth, R., Banerjee, S.: An environment-mediated quantum deleter. Phys. Lett. A 367(4–5), 295–299 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  47. Bina, M., Mandarino, A., Olivares, S., Paris, M.G.A.: Drawbacks of the use of fidelity to assess quantum resources. Phys. Rev. A 89(1), 012305 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Prof. R. Srikanth of PPISR, Bangalore, India, for useful discussions during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javid Naikoo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naikoo, J., Banerjee, S. Coherence-based measure of quantumness in (non-) Markovian channels. Quantum Inf Process 19, 29 (2020). https://doi.org/10.1007/s11128-019-2533-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2533-x

Keywords

Navigation