Skip to main content
Log in

Evolution of coherence and non-classicality under global environmental interaction

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A master equation has been constructed for a global system–bath interaction in the both absence and presence of non-Markovian noise. For the memoryless case, it has been exactly solved for a paradigmatic class of two qubit states in high- and zero-temperature thermal environment. For the non-Markovian model, it has been solved for zero-temperature bath. The evolution of quantum coherence and entanglement has been observed in the presence of the above-mentioned interactions. We show that the global part of the system–bath interaction compensates for the decoherence, resulting in slowdown of coherence and entanglement decay. For an appropriately defined limiting case, both coherence and entanglement show freezing behavior for the high-temperature bath. In case of zero-temperature bath, the mentioned interaction not only stabilizes the non-classical correlations, but also enhances them for a finite period. For the memory-dependent case, we have seen that the global interaction enhances the backflow of information from environment to the system, as it enhances the regeneration of coherence and entanglement. Also we have studied the generation of quantum Fisher information by the mentioned process. An intuitive measure of non-classicality based on non-commutativity of quantum states has been considered. Bounds on generated quantum Fisher information have been found in terms of quantumness and coherence. This gives us a novel understanding of quantum Fisher information as a measure of non-classicality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2007)

    Book  MATH  Google Scholar 

  2. Weiss, U.: Quantum Dissipative Systems. World Scientific, Singapore (2000)

    Google Scholar 

  3. Ma, X.S., et al.: Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269–273 (2012)

    Article  ADS  Google Scholar 

  4. Cirac, J.I., Zoller, P., Kimble, J.H., et al.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997)

    Article  ADS  Google Scholar 

  5. Bouwmeester, D., Pan, J.W., Mattle, K., et al.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  MATH  Google Scholar 

  6. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University of Press, Cambridge (2000)

    MATH  Google Scholar 

  7. Liang, Y.C., Kaszlikowski, D., Englert, B.-G., Kwek, L.C., Oh, C.H.: Tomographic quantum cryptography. Phys. Rev. A 68(022324), 1–9 (2003)

    Google Scholar 

  8. Banerjee, S.: Geometric phase of a qubit interacting with a squeezed-thermal bath. Eur. Phys. J. D 46, 335–344 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. Sandhya, S.N., Banerjee, S.: Geometric phase: an indicator of entanglement. Eur. Phys. J. D 66(168), 1–6 (2012)

    ADS  Google Scholar 

  10. Banerjee, S., Chandrashekar, C.M., Pati, A.K.: Enhancement of geometric phase by frustration of decoherence: a Parrondo-like effect. Phys. Rev. A 87(042119), 1–5 (2013)

    Google Scholar 

  11. Srikanth, R., Banerjee, S.: Squeezed generalized amplitude damping channel. Phys. Rev. A 77(012318), 1–9 (2008)

    Google Scholar 

  12. Chandrashekar, C.M., Srikanth, R., Banerjee, S.: Symmetries and noise in quantum walk. Phys. Rev. A 76(022316), 1–15 (2007)

    MathSciNet  Google Scholar 

  13. Banerjee, S., Srikanth, R., Chandrashekar, C.M., Rungta, P.: Symmetry-noise interplay in a quantum walk on an n-cycle. Phys. Rev. A 78(052316), 1–5 (2008)

    Google Scholar 

  14. Srikanth, R., Banerjee, S., Chandrashekar, C.M.: Quantumness in a decoherent quantum walk using measurement-induced disturbance. Phys. Rev. A 81(062123), 1–7 (2010)

    Google Scholar 

  15. Thapliyal, K., Banerjee, S., Pathak, A., Omkar, S., Ravishankar, V.: Quasiprobability distributions in open quantum systems: spin-qubit systems. Ann. Phys. 362, 261–286 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Thapliyal, K., Banerjee, S., Pathak, A.: Tomograms for open quantum systems: in(finite) dimensional optical and spin systems. Ann. Phys. 366, 148–167 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Goyal, S., Banerjee, S., Ghosh, S.: Effect of control procedures on the evolution of entanglement in open quantum systems. Phys. Rev. A 85(012327), 1–17 (2012)

    Google Scholar 

  18. Banerjee, S., Ghosh, R.: Quantum theory of a Stern–Gerlach system in contact with a linearly dissipative environment. Phys. Rev. A 62(042105), 1–8 (2000)

    Google Scholar 

  19. Banerjee, S., Ghosh, R.: General quantum Brownian motion with initially correlated and nonlinearly coupled environment. Phys. Rev. E 67(056120), 1–13 (2003)

    Google Scholar 

  20. Ishizaki, A., Fleming, G.R.: On the adequacy of the Redfield equation and related approaches to the study of quantum dynamics in electronic energy transfer. J. Chem. Phys. 130(234110), 1–8 (2009)

    Google Scholar 

  21. Leggio, B., Lo Franco, R., Soares-Pinto, D.O., Horodecki, P., Compagno, G.: Distributed correlations and information flows within a hybrid multipartite quantum-classical system. Phys. Rev. A 92(032311), 1–8 (2015)

    Google Scholar 

  22. Man, Z.-X., Xia, Y.-J., Lo Franco, R.: Cavity-based architecture to preserve quantum coherence and entanglement. Sci. Rep. 5(13843), 1–13 (2015)

    Google Scholar 

  23. Xu, J.-S., Sun, K., Li, C.-F., Xu, X.-Y., Guo, G.-C., Andersson, E., Lo Franco, R., Compagno, G.: Experimental recovery of quantum correlations in absence of system-environment back-action. Nat. Commun. 4(2851), 1–7 (2013)

    Google Scholar 

  24. Lo Franco, R., Bellomo, B., Maniscalco, S., Compagno, G.: Dynamics of quantum correlations in two qubit systems within non-Markovian environments. Int. J. Mod. Phys. B 27(1345053), 1–20 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Man, Z.-X., Xia, Y.-J., Lo, R.: Franco, harnessing non-Markovian quantum memory by environmental coupling. Phys. Rev. A 92(012315), 1–8 (2015)

    Google Scholar 

  26. Wolf, M.M., et al.: Assessing non-Markovian quantum dynamics. Phys. Rev. Lett. 101(150402), 1–4 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Breuer, H.P., et al.: Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103(210401), 1–4 (2009)

    MathSciNet  Google Scholar 

  28. Laine, E.M., et al.: Measure for the non-Markovianity of quantum processes. Phys. Rev. A 81(062115), 1–8 (2010)

    Google Scholar 

  29. Rivas, A., et al.: Entanglement and non-Markovianity of quantum evolutions. Phys. Rev. Lett. 105(050403), 1–4 (2010)

    MathSciNet  Google Scholar 

  30. Rajagopal, A.K., Devi, A.R.U., Rendell, R.W.: Kraus representation of quantum evolution and fidelity as manifestations of Markovian and non-Markovian forms. Phys. Rev. A 82(042107), 1–7 (2010)

    Google Scholar 

  31. Breuer, H.P.: Foundations and measures of quantum non-Markovianity. J. Phys. B At. Mol. Opt. Phys. 45(154001), 1–12 (2012)

    Google Scholar 

  32. Thapliyal, K., Pathak, A., Banerjee, S.: Quantum cryptography over non-Markovian channels. Quantum Inf. Process. 16(115), 1–21 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Banerjee, S., Kumar, N.P., Srikanth, R., Jagadish, V., Petruccione, F.: Non-Markovian dynamics of discrete-time quantum walks. arXiv:1703.08004 (2017)

  34. Kumar, P., Banerjee, S., Srikanth, R., Jagadish, V., Petruccione, F.: Non-Markovian evolution: a quantum walk perspective. arXiv:1711.03267 (2017)

  35. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113(140401), 1–5 (2014)

    Google Scholar 

  36. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116(120404), 1–6 (2016)

    Google Scholar 

  37. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115(020403), 1–6 (2015)

    MathSciNet  Google Scholar 

  38. Singh, U., Bera, M.N., Dhar, H.S., Pati, A.K.: Maximally coherent mixed states: complementarity between maximal coherence and mixedness. Phys. Rev. A 91(052115), 1–8 (2015)

    Google Scholar 

  39. Singh, U., Bera, M.N., Misra, A., Pati, A.K.: Erasing quantum coherence: an operational approach. arXiv:1506.08186 (2015)

  40. Chitambar, E., Streltsov, A., Rana, S., Bera, M.N., Adesso, G., Lewenstein, M.: Assisted distillation of quantum coherence. Phys. Rev. Lett. 116(070402), 1–5 (2016)

    Google Scholar 

  41. Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93(012110), 1–7 (2016)

    MathSciNet  Google Scholar 

  42. de Vicente, J.I., Streltsov, A.: Genuine quantum coherence. J. Phys. A Math. Theor. 50(045301), 1–35 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Chanda, T., Bhattacharya, S.: Delineating incoherent non-Markovian dynamics using quantum coherence. Ann. Phys. 366, 1–12 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Tang, N., Cheng, W., Zeng, H.-S.: Coherence, correlation and non-Markovianity in qubit systems. Eur. Phys. J. D 68(278), 1–8 (2014)

    Google Scholar 

  45. Banerjee, S., Ravishankar, V., Srikanth, R.: Dynamics of entanglement in two-qubit open system interacting with a squeezed thermal bath via dissipative interaction. Ann. Phys. 325, 816–834 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Ficek, Z., Tanas, R.: Entangled states and collective nonclassical effects in two-atom systems. Phys. Rep. 372, 369–443 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Fisher, R.A.: Theory of statistical estimation. Proc. Camb. Philos. Soc. 22, 700–725 (1925)

    Article  ADS  MATH  Google Scholar 

  48. Rao, C.R.: Information and accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc. 37, 81–91 (1945)

    MathSciNet  MATH  Google Scholar 

  49. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    MATH  Google Scholar 

  50. Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory, Chapter VI. North-Holland, Amsterdam (1982)

    Google Scholar 

  51. Hall, M.J.W.: Quantum properties of classical Fisher information. Phys. Rev. A 62(012107), 1–6 (2000)

    MathSciNet  Google Scholar 

  52. Banerjee, S., Alok, A.K., Omkar, S.: Quantum Fisher and skew information for Unruh accelerated Dirac qubit. Eur. Phys. J. C 76(437), 1–9 (2016)

    Google Scholar 

  53. Ferro, L., Facchi, P., Fazio, R., Illuminati, F., Marmo, G., Vedral, V., Pascazio, S.: Measuring quantumness: from theory to observability in interferometric setups. arXiv: 1501.03099v1 (2015)

  54. Preskill, J.: Quantum Information and Computation. Lecture Notes for Physics, vol. 229. Springer, Berlin (1998)

    MATH  Google Scholar 

  55. Lider, D.A., et al.: Condensed matter from completely positive maps to the quantum Markovian semigroup master equation. Chem. Phys. 268, 35–53 (2001)

    Article  ADS  Google Scholar 

  56. Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed “X” states. Quantum Inf. Comput. 7, 459–468 (2007)

    MathSciNet  MATH  Google Scholar 

  57. Rau, A.R.P.: Algebraic characterization of X-states in quantum information. J. Phys. A 42(412002), 1–7 (2009)

    MATH  Google Scholar 

  58. Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131(2766), 1–23 (1963)

    MathSciNet  MATH  Google Scholar 

  59. Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10(277), 1–3 (1963)

    MathSciNet  MATH  Google Scholar 

  60. Almeida, J., de Groot, P.C., Huelga, S.F., Liguori, A.M., Plenio, M.B.: Probing quantum coherence in qubit arrays. J. Phys. B At. Mol. Opt. Phys. 46(104002), 1–8 (2013)

    Google Scholar 

  61. Lloyd, S.: Quantum coherence in biological systems. J. Phys. Conf. Ser. 302(012037), 1–5 (2011)

    Google Scholar 

  62. Romero, E., Augulis, R., Novoderezhkin, V.I., Ferretti, M., Thieme, J., Zigmantas, D., Grondelle, R.V.: Quantum coherence in photosynthesis for efficient solar energy conversion. Nat. Phys. 10, 676–682 (2014)

    Article  Google Scholar 

  63. Rebentrost, P., Mohseni, M., Kassal, I., Lloyd, S., Aspuru-Guzik, A.: Environment-assisted quantum transport. New J. Phys. 11(033003), 1–13 (2009)

    Google Scholar 

  64. Manzano, D., Tiersch, M., Asadian, A., Briegel, H.J.: Quantum transport efficiency and Fourier’s law. Phys. Rev. E 86(061118), 1–5 (2012)

    Google Scholar 

  65. Kondepudi, D., Prigogine, I.: Modern Thermodynamics. Wiley, Sussex (1998)

    MATH  Google Scholar 

  66. Spohn, H.: Entropy production for quantum dynamical semigroups. J. Math. Phys. 19(1227), 1–5 (1978)

    MathSciNet  MATH  Google Scholar 

  67. Brandao, F.G.S.L., Ng, N.H.Y., Oppenheim, J., Wehner, S.: The second laws of quantum thermodynamics. PNAS 112, 3275–3279 (2015)

    Article  ADS  Google Scholar 

  68. Scully, M., Zubairy, M., Agarwal, G.S., Walther, H.: Extracting work from a single heat bath via vanishing quantum coherence. Science 299, 862–864 (2003)

    Article  ADS  Google Scholar 

  69. Scully, M.O.: Quantum photocell: using quantum coherence to reduce radiative recombination and increase efficiency. Phys. Rev. Lett. 104(207701), 1–4 (2010)

    Google Scholar 

  70. Mohseni, M., Rebentrost, P., Lloyd, S., AspuruGuzik, A.: Environment-assisted quantum walks in photosynthetic energy transfer. J. Chem. Phys. 129(174106), 1–10 (2008)

    Google Scholar 

  71. Plenio, M.B., Huelga, S.F.: Dephasing-assisted transport: quantum networks and biomolecules. New J. Phys. 10(113019), 1–15 (2008)

    Google Scholar 

  72. Lin, Y.L., et al.: Dissipative production of a maximally entangled steady state. Nature 504, 415418 (2013)

    Article  Google Scholar 

  73. Beretta, G.P.: Maximum entropy production rate in quantum thermodynamics. J. Phys. Conf. Ser. 237(012004), 1–32 (2010)

    Google Scholar 

  74. Mari, A., Eisert, J.: Cooling by heating: very hot thermal light can significantly cool quantum systems. PRL 108(120602), 1–5 (2012)

    Google Scholar 

  75. Correa, L.A., et al.: Quantum-enhanced absorption refrigerators. Sci. Rep. 4(3949), 1–9 (2014)

    Google Scholar 

  76. Bera, M.N., Qureshi, T., Siddiqui, M.A., Pati, A.K.: Duality of quantum coherence and path distinguishability. Phys. Rev. A 92(012118), 1–6 (2015)

    Google Scholar 

  77. Alok, A.K., Banerjee, S., Sankar, S.U.: Quantum correlations in terms of neutrino oscillation probabilities. arXiv:1411.5536 (2014)

  78. Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114(210401), 1–6 (2015)

    Google Scholar 

  79. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(2245), 1–4 (1998)

    MATH  Google Scholar 

  80. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett 78(5022), 1–4 (1997)

    Google Scholar 

  81. Luo, S.: Wigner-Yanase skew information vs. quantum Fisher information. Proc. Am. Math. Soc. 132, 885–890 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  82. Luo, S.: Wigner-Yanase skew information and uncertainty relations. Phys. Rev. Lett. 91(180403), 1–4 (2003)

    Google Scholar 

  83. Luo, S., Zhang, Q.: Informational distance on quantum-state space. Phys. Rev. A 69(032106), 1–8 (2004)

    MathSciNet  Google Scholar 

  84. Iyengar, P., Chandan, G.N., Srikanth, R.: Quantifying quantumness via commutators: an application to quantum walk. arXiv:1312.1329 (2013)

  85. Zyczkowski, K., et al.: Dynamics of quantum entanglement. Phys. Rev. A 65(012101), 1–9 (2001)

    MathSciNet  Google Scholar 

  86. Daffer, S., Wodkiewicz, K., McIver, J.K.: Quantum Markov channels for qubits. Phys. Rev. A 67(062312), 1–13 (2003)

    MathSciNet  MATH  Google Scholar 

  87. Chakrabarty, I., Banerjee, S., Siddharth, N.: A study of quantum correlations in open quantum systems. Quantum Inf. Comput. 11, 0541–0562 (2011)

    MathSciNet  MATH  Google Scholar 

  88. Yu, T., Eberly, J.H.: Entanglement evolution in a non-Markovian environment. Opt. Commun. 283, 676–680 (2010)

    Article  ADS  Google Scholar 

  89. Kubo, R., Toda, M., Hashitsume, N.: Statistical Physics II. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  90. Diosi, L., Gisin, N., Strunz, W.T.: Non-Markovian quantum state diffusion. Phys. Rev. A 58(1699), 1–14 (1998)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

S. Bhattacharya thanks Uttam Singh, Avijit Misra and Titas Chanda of Harish-Chandra Research Institute (HRI) for useful discussions. S. Banerjee acknowledges the warm hospitality extended to him by the Quantum Information Group at HRI, where this work was initiated. S. Bhattacharya acknowledges the Department of Atomic Energy, Govt. of India, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samyadeb Bhattacharya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, S., Banerjee, S. & Pati, A.K. Evolution of coherence and non-classicality under global environmental interaction. Quantum Inf Process 17, 236 (2018). https://doi.org/10.1007/s11128-018-1989-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1989-4

Keywords

Navigation