Skip to main content
Log in

Comparing coherence measures for X states: Can quantum states be ordered based on quantum coherence?

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum coherence is an essential resource for quantum information processing and various quantitative measures of it have been introduced. However, the interconnections between these measures are not yet understood properly. Here, using a large set of randomly prepared two-qubit X states (as well as general two-qubit states) and analytically obtained expressions of various measures of coherence (e.g., relative entropy of coherence, l1 norm of coherence, coherence via skew information, and first-order coherence), it is established that these measures of quantum coherence cannot be used to perform ordering of a set of quantum states based on the amount of coherence present in a state. Further, it is shown that for a given value of quantum coherence measured by the relative entropy of coherence, maximally nonlocal mixed states of X type [which are characterized by the maximal violation of the Clauser–Horne–Shimony–Holt (CHSH) inequality] have maximum quantum coherence as measured by l1 norm of coherence. In addition, the amount of coherence measured by l1 norm of coherence for a Werner state is found to be always less than that for a maximally nonlocal mixed state even when they possess an equal amount of coherence measured by the relative entropy of coherence. In our study, we have also explored the connection between the above resource theory-based measures of coherence and the recently introduced first-order coherence and maximum first-order coherence measures for two-qubit systems. We find that while there seems to be no obvious connection between the resource theory-based measures and first-order and maximum first-order coherence, a correlation seems to exist between the maximum first-order coherence and concurrence, both of which are basis independent quantities. These observations could be of use in obtaining a deeper understanding of the interconnections between various measures of quantum coherence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  2. Boyd, R.W.: Nonlinear Optics. Elsevier, Amsterdam (2003)

    Google Scholar 

  3. Miller, W.H.: Perspective: quantum or classical coherence? J. Chem. Phys. 136, 210901 (2012)

    Article  ADS  Google Scholar 

  4. Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  5. Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  6. Harrow, A.W., Montanaro, A.: Quantum computational supremacy. Nature 549, 203 (2017)

    Article  ADS  Google Scholar 

  7. Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  8. Hu, M.L., Hu, X., Wang, J., Peng, Y., Zhang, Y.R., Fan, H.: Quantum coherence and geometric quantum discord. Phys. Rep. 762–764, 1 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  10. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  11. Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93, 012110 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  12. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    Article  ADS  Google Scholar 

  13. Yu, C.S.: Quantum coherence via skew information and its polygamy. Phys. Rev. A 95, 042337 (2017)

    Article  ADS  Google Scholar 

  14. Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016)

    Article  ADS  Google Scholar 

  15. Yuan, X., Zhou, H., Cao, Z., Ma, X.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)

    Article  ADS  Google Scholar 

  16. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)

    Article  ADS  Google Scholar 

  17. Chitambar, E., Streltsov, A., Rana, S., Bera, M.N., Adesso, G., Lewenstein, M.: Assisted distillation of quantum coherence. Phys. Rev. Lett. 116, 070402 (2016)

    Article  ADS  Google Scholar 

  18. Svozilík, J., Vallés, A., Peřina Jr., J., Torres, J.P.: Revealing hidden coherence in partially coherent light. Phys. Rev. Lett. 115, 220501 (2015)

    Article  ADS  Google Scholar 

  19. Korzekwa, K., Lostaglio, M., Oppenheim, J., Jennings, D.: The extraction of work from quantum coherence. New J. Phys. 18, 023045 (2016)

    Article  ADS  Google Scholar 

  20. Narasimhachar, V., Gour, G.: Low-temperature thermodynamics with quantum coherence. Nat. Commun. 6, 7689 (2015)

    Article  ADS  Google Scholar 

  21. Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)

    Article  ADS  Google Scholar 

  22. Henao, I., Serra, R.M.: Role of quantum coherence in the thermodynamics of energy transfer. Phys. Rev. E 97, 062105 (2018)

    Article  ADS  Google Scholar 

  23. Lloyd, S.: Quantum coherence in biological systems. J. Phys. Conf. Ser. 302, 012037 (2011)

    Article  Google Scholar 

  24. Lambert, N., Chen, Y.N., Cheng, Y.C., Li, C.M., Chen, G.Y., Nori, F.: Quantum biology. Nat. Phys. 9, 10 (2013)

    Article  Google Scholar 

  25. Gauger, E.M., Rieper, E., Morton, J.J.L., Benjamin, S.C., Vedral, V.: Sustained quantum coherence and entanglement in the avian compass. Phys. Rev. Lett. 106, 040503 (2011)

    Article  ADS  Google Scholar 

  26. Chuang, I.L., Vandersypen, L.M.K., Zhou, X., Leung, D.W., Lloyd, S.: Experimental realization of a quantum algorithm. Nature 393, 143 (1998)

    Article  ADS  Google Scholar 

  27. Gershenfeld, N.A., Chuang, I.L.: Bulk spin-resonance quantum computation. Science 275, 350 (1997)

    Article  MathSciNet  Google Scholar 

  28. Joo, J., Munro, W.J., Spiller, T.P.: Quantum metrology with entangled coherent states. Phys. Rev. Lett. 107, 083601 (2011)

    Article  ADS  Google Scholar 

  29. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5, 222 (2011)

    Article  ADS  Google Scholar 

  30. Miranowicz, A., Bartkiewicz, K., Pathak, A., Perina Jr., J., Chen, Y.N., Nori, F.: Statistical mixtures of states can be more quantum than their superpositions: comparison of nonclassicality measures for single-qubit states. Phys. Rev. A 91, 042309 (2015)

    Article  ADS  Google Scholar 

  31. Miranowicz, A., Bartkiewicz, K., Lambert, N., Chen, Y.-N., Nori, F.: Increasing relative nonclassicality quantified by standard entanglement potentials by dissipation and unbalanced beam splitting. Phys. Rev. A 92, 062314 (2015)

    Article  ADS  Google Scholar 

  32. Virmani, S., Plenio, M.B.: Ordering states with entanglement measures. Phys. Lett. A 268, 31 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  33. Ku, H.Y., Chen, S.L., Budroni, C., Miranowicz, A., Chen, Y.N., Nori, F.: Einstein–Podolsky–Rosen steering: its geometric quantification and witness. Phys. Rev. A 97, 022338 (2018)

    Article  ADS  Google Scholar 

  34. Bartkiewicz, K., Horst, B., Lemr, K., Miranowicz, A.: Entanglement estimation from Bell inequality violation. Phys. Rev. A 88, 052105 (2013)

    Article  ADS  Google Scholar 

  35. Chen, S.L., Lambert, N., Li, C.M., Miranowicz, A., Chen, Y.N., Nori, F.: Quantifying non-Markovianity with temporal steering. Phys. Rev. Lett. 116, 020503 (2016)

    Article  ADS  Google Scholar 

  36. Liu, C.L., Yu, X.D., Xu, G.F., Tong, D.M.: Ordering states with coherence measures. Quantum Inf. Process. 15, 4189 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  37. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  38. Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed ”X” states. Quantum Inf. Comput. 7, 459 (2007)

    MathSciNet  MATH  Google Scholar 

  39. Quesada, N., Al-Qasimi, A., James, D.F.V.: Quantum properties and dynamics of X states. J. Mod. Opt. 59, 1322 (2012)

    Article  ADS  Google Scholar 

  40. Mendonça, P.E., Marchiolli, M.A., Galetti, D.: Entanglement universality of two-qubit \(X\)-states. Ann. Phys. 351, 79 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  41. Peters, N.A., Altepeter, J.B., Branning, D.A., Jeffrey, E.R., Wei, T.C., Kwiat, P.G.: Maximally entangled mixed states: creation and concentration. Phys. Rev. Lett. 92, 133601 (2004)

    Article  ADS  Google Scholar 

  42. Barbieri, M., De Martini, F., Di Nepi, G., Mataloni, P.: Generation and characterization of Werner states and maximally entangled mixed states by a universal source of entanglement. Phys. Rev. Lett. 92, 177901 (2004)

    Article  ADS  Google Scholar 

  43. Altepeter, J.B., Branning, D., Jeffrey, E., Wei, T.C., Kwiat, P.G., Thew, R.T., O’Brien, J.L., Nielsen, M.A., White, A.G.: Ancilla-assisted quantum process tomography. Phys. Rev. Lett. 90, 193601 (2003)

    Article  ADS  Google Scholar 

  44. Zhang, Y.S., Huang, Y.F., Li, C.F., Guo, G.C.: Experimental preparation of the Werner state via spontaneous parametric down-conversion. Phys. Rev. A 66, 062315 (2002)

    Article  ADS  Google Scholar 

  45. Monroe, C., Meekhof, D.M., King, B.E., Itano, W.M., Wineland, D.J.: Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  46. Agarwal, G.S., Kapale, K.T.: Generation of Werner states via collective decay of coherently driven atoms. Phys. Rev. A 73, 022315 (2006)

    Article  ADS  Google Scholar 

  47. Rau, A.R.P.: Manipulating two-spin coherences and qubit pairs. Phys. Rev. A 61, 032301 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  48. Bera, M.N., Qureshi, T., Siddiqui, M.A., Pati, A.K.: Duality of quantum coherence and path distinguishability. Phys. Rev. A 92, 012118 (2015)

    Article  ADS  Google Scholar 

  49. Bagan, E., Bergou, J.A., Cottrell, S.S., Hillery, M.: Relations between coherence and path information. Phys. Rev. Lett. 116, 160406 (2016)

    Article  ADS  Google Scholar 

  50. Paul, T., Qureshi, T.: Measuring quantum coherence in multislit interference. Phys. Rev. A 95, 042110 (2017)

    Article  ADS  Google Scholar 

  51. Biswas, T., Díaz, M.G., Winter, A.: Interferometric visibility and coherence. Proc. R. Soc. A 473, 20170170 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  52. Venugopalan, A., Mishra, S., Qureshi, T.: Monitoring decoherence via measurement of quantum coherence. Physica A 516, 308–316 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  53. Yao, Y., Xiao, X., Ge, L., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A 92, 022112 (2015)

    Article  ADS  Google Scholar 

  54. Asbóth, J.K., Calsamiglia, J., Ritsch, H.: Computable measure of nonclassicality for light. Phys. Rev. Lett. 94, 173602 (2005)

    Article  ADS  Google Scholar 

  55. Erol, V., Ozaydin, F., Altintas, A.A.: Analysis of entanglement measures and locc maximized quantum fisher information of general two qubit systems. Sci. Rep. 4, 5422 (2014)

    Article  ADS  Google Scholar 

  56. Chitambar, E., Gour, G.: Quantum resource theories. Rev. Mod. Phys. 91(2), 025001 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  57. Kagalwala, K.H., Giuseppe, G.D., Abouraddy, A.F., Saleh, B.E.: Bell’s measure in classical optical coherence. Nat. Photonics 7, 72 (2013)

    Article  ADS  Google Scholar 

  58. Fang, Y.N., Dong, G.H., Zhou, D.L., Sun, C.P.: Quantification of symmetry. Commun. Theor. Phys. 65, 423 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  59. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598–601 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  60. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  61. Batle, J., Casas, M.: Nonlocality and entanglement in qubit systems. J. Phys. A Math. Theor. 44, 445304 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  62. Ishizaka, S., Hiroshima, T.: Maximally entangled mixed states under nonlocal unitary operations in two qubits. Phys. Rev. A 62, 022310 (2000)

    Article  ADS  Google Scholar 

  63. Verstraete, F., Audenaert, K., Moor, B.D.: Maximally entangled mixed states of two qubits. Phys. Rev. A 64, 012316 (2001)

    Article  ADS  Google Scholar 

  64. Munro, W.J., James, D.F.V., White, A.G., Kwiat, P.G.: Maximizing the entanglement of two mixed qubits. Phys. Rev. A 64, 030302 (2001)

    Article  ADS  Google Scholar 

  65. Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit \(X\) states. Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

  66. Lu, X.M., Ma, J., Xi, Z., Wang, X.: Optimal measurements to access classical correlations of two-qubit states. Phys. Rev. A 83, 012327 (2011)

    Article  ADS  Google Scholar 

  67. Huang, Y.: Quantum discord for two-qubit \(X\) states: analytical formula with very small worst-case error. Phys. Rev. A 88, 014302 (2013)

    Article  ADS  Google Scholar 

  68. Rau, A.R.P.: Algebraic characterization of \(X\)-states in quantum information. J. Phys. A Math. Theor. 42, 412002 (2009)

    Article  MathSciNet  Google Scholar 

  69. Miszczak, J.A., Puchał, Z., Gawron, P.: Quantum information package for mathematica (2010). http://zksi.iitis.pl/wiki/projects:mathematica-qi. Accessed 5 Apr 2019

  70. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  Google Scholar 

  71. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  72. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

Download references

Acknowledgements

AP thanks Department of Science and Technology (DST), India for the support provided through the project number EMR/2015/000393. SM thanks Guru Gobind Singh Indraprastha University for STRF. KT thanks the project LO1305 of the Ministry of Education, Youth and Sports of the Czech Republic for support. AP and KT also thank A. Miranowicz, P. Panigrahi and J. Perina Jr. for some fruitful discussion and their interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Pathak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Thapliyal, K., Pathak, A. et al. Comparing coherence measures for X states: Can quantum states be ordered based on quantum coherence? . Quantum Inf Process 18, 295 (2019). https://doi.org/10.1007/s11128-019-2403-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2403-6

Keywords

Navigation