Skip to main content
Log in

Quantum state transfer through a spin chain in two non-Markovian baths

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Transfer of quantum states through spin chain system has been discussed a lot. However, the interaction of the system with a noisy environment needs to be considered for practical quantum information processing tasks. Here, we study a model where the two ends of the spin chain are independently immersed in two bosonic baths. Using the quantum state diffusion (QSD) equation approach, we obtain the master equation of the system. Assuming a noise-independent O operator associated with the QSD equation, we numerically calculate the fidelity evolution for two models of system–bath interactions: dephasing model and dissipation model. For these two models, our calculation shows that the existence of the baths always lowers the fidelity, but the non-Markovianity from the baths can be useful for enhancing the state transfer fidelity. Our investigation takes one step toward practical quantum communication through a spin system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Northup, T.E., Blatt, R.: Quantum information transfer using photons. Nat. Photonics 8, 356 (2014)

    Article  ADS  Google Scholar 

  2. Li, T., Yin, Z.Q.: Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator. Sci. Bull. 61, 2 (2016)

    Google Scholar 

  3. Jacobs, K., et al.: Isometric immersions, energy minimization and self-similar buckling in non-Euclidean elastic sheets. EPL (Europhys. Lett.) 114, 4 (2016)

    Article  Google Scholar 

  4. Zhu, F., et al.: Pore-scale lattice Boltzmann simulation of flow and mass transfer in bioreactor with an immobilized granule for biohydrogen production. Sci. Bull. 62, 22 (2017)

    Article  Google Scholar 

  5. Qin, W., et al.: Multiphoton quantum communication in quantum networks. Phys. Rev. A 89, 062314 (2014)

    Article  ADS  Google Scholar 

  6. Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003)

    Article  ADS  Google Scholar 

  7. Christandl, M., Datta, N., Dorlas, T.C., et al.: Perfect transfer of arbitrary states in quantum spin networks. Phys. Rev. A 71, 032312 (2005)

    Article  ADS  Google Scholar 

  8. Wojcik, A., et al.: Unmodulated spin chains as universal quantum wires. Phys. Rev. A 72, 034303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  9. Chen, B., Li, Y.: Coherent state transfer through a multi-channel quantum network: natural versus controlled evolution passage. Sci. China Phys. Mech. Astron. 59, 4 (2016)

    Google Scholar 

  10. Huang, B.-H., Kang, Y.-H., Chen, Y.-H., Shi, Z.-C., Song, J., Xia, Y.: Quantum state transfer in spin chains via shortcuts to adiabaticity. Phys. Rev. A 97, 012333 (2018)

    Article  ADS  Google Scholar 

  11. Chen, Y.-H., Xia, Y., Chen, Q.-Q., Song, J.: Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems. Phys. Rev. A 89, 033856 (2014)

    Article  ADS  Google Scholar 

  12. Agundez, R.R., Hill, C.D., Hollenberg, L.C.L., Rogge, S., Blaauboer, M.: Superadiabatic quantum state transfer in spin chains. Phys. Rev. A 95, 012317 (2017)

    Article  ADS  Google Scholar 

  13. Yao, N.Y., Jiang, L., Gorshkov, A.V., Gong, Z.-X., Zhai, A., Duan, L.-M., Lukin, M.D.: Robust quantum state transfer in random unpolarized spin chains. Phys. Rev. Lett. 106, 040505 (2011)

    Article  ADS  Google Scholar 

  14. Wang, Z.-M., Bishop, C.A., Byrd, M.S., Shao, B., Zou, J.: Robust and reliable transfer of a qubit state through an spin chain. Phys. Rev. A 80, 022330 (2009)

    Article  ADS  Google Scholar 

  15. Qin, W., Li, J.L., Long, G.L.: High-dimensional quantum state transfer in a noisy network environment. Chin. Phys. B 24, 040305 (2015)

    Article  ADS  Google Scholar 

  16. Kempton, M., Lippner, G., Yau, S.-T.: Pretty good quantum state transfer in symmetric spin networks via magnetic field. Quantum Inf. Process. 16, 210 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  17. Behzadi, N., Ahansaz, B.: Improving quantum state transfer efficiency and entanglement distribution in binary tree spin network through incomplete collapsing measurements. Quantum Inf. Process. 17, 93 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  18. Štefaňák, M., Skoupyý, S.: Perfect state transfer by means of discrete-time quantum walk on complete bipartite graphs. Quantum Inf. Process. 16, 3 (2017)

    Article  MathSciNet  Google Scholar 

  19. Qin, W., Wang, C., Long, G.L.: High-dimensional quantum state transfer through a quantum spin chain. Phys. Rev. A 87, 012339 (2013)

    Article  ADS  Google Scholar 

  20. Longhi, S.: Quantum state transfer by time reversal in the continuum. EPL (Europhys. Lett.) 113, 6 (2016)

    Article  Google Scholar 

  21. Feng, Z.-B., Wang, H.-L., Yan, R.-Y.: Quantum state transfer between an optomechanical cavity and a diamond nuclear spin ensemble. Quantum Inf. Process. 15, 8 (2016)

    Article  MathSciNet  Google Scholar 

  22. Hedegard, P., Caldeira, A.O.: Quantum dynamics of a particle in a fermionic environment. Phys. Scr. 35, 609 (1987)

    Article  ADS  Google Scholar 

  23. Castro Neto, A.H., Caldeira, A.O.: Transport properties of solitons. Phys. Rev. E 48, 4037 (1993)

    Article  ADS  Google Scholar 

  24. Duarte, O.S., Caldeira, A.O.: Effective coupling between two Brownian particles. Phys. Rev. Lett. 97, 250601 (2006)

    Article  ADS  Google Scholar 

  25. Hur, K.L.: Entanglement entropy, decoherence, and quantum phase transitions of a dissipative two-level system. Ann. Phys. 323, 2208 (2008)

    Article  ADS  Google Scholar 

  26. Vierheilig, C., Hausinger, J., Grifoni, M.: Dissipative dynamics of a qubit coupled to a nonlinear oscillator. Phys. Rev. A 80, 052331 (2009)

    Article  ADS  Google Scholar 

  27. Wu, L.-A., Yu, C.X., Segal, D.: Exact dynamics of interacting qubits in a thermal environment: results beyond the weak coupling limit. New J. Phys. 15, 023044 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  28. Carmichael, H.: An Open System Approach to Quantum Optics. Springer, Berlin (2004)

    Google Scholar 

  29. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  30. Kossakowski, V.A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of Nlevel systems. J. Math. Phys. 17, 821 (1976)

    Article  ADS  Google Scholar 

  31. Hu, M.L.: State transfer in dissipative and dephasing environments. Eur. Phys. J. D 59, 497 (2010)

    Article  ADS  Google Scholar 

  32. Paz, J.P., Roncaglia, A.J.: Dynamics of the entanglement between two oscillators in the same environment. Phys. Rev. Lett. 100, 220401 (2008)

    Article  ADS  Google Scholar 

  33. Breuer, H.-P., Burgarth, D., Petruccione, F.: Non-Markovian dynamics in a spin star system: exact solution and approximation techniques. Phys. Rev. B 70, 045323 (2004)

    Article  ADS  Google Scholar 

  34. Burgarth, D., Bose, S.: Universal destabilization and slowing of spin-transfer functions by a bath of spins. Phys. Rev. A 73, 062321 (2006)

    Article  ADS  Google Scholar 

  35. Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  36. Liu, J., Lu, X.-M., Wang, X.: Nonunital non-Markovianity of quantum dynamics. Phys. Rev. A 87, 042103 (2013)

    Article  ADS  Google Scholar 

  37. Chruściński, D., Maniscalco, S.: Degree of non-Markovianity of quantum evolution. Phys. Rev. Lett. 112, 120404 (2014)

    Article  ADS  Google Scholar 

  38. Liu, J., Sun, K., Wang, X., Zhao, Y.: Quantifying non-Markovianity for a chromophorequbit pair in a super-Ohmic bath. Phys. Chem. Chem. Phys. 17, 8087 (2015)

    Article  Google Scholar 

  39. Sampaio, R., Suomela, S., Schmidt, R., Nissila, T.A.: Quantifying non-Markovianity due to driving and a finite-size environment in an open quantum system. Phys. Rev. A 95, 022120 (2017)

    Article  ADS  Google Scholar 

  40. Diósi, L., Strunz, W.T.: The non-Markovian stochastic Schrodinger equation for open systems. Phys. Lett. A 235, 569 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  41. Diósi, L., Gisin, N., Strunz, W.T.: Non-Markovian quantum state diffusion. Phys. Rev. A 58, 1699 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  42. Strunz, W.T., Diósi, L., Gisin, N.: Open system dynamics with non-Markovian quantum trajectories. Phys. Rev. Lett. 82, 1801 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  43. Yu, T., Diósi, L., Gisin, N., Strunz, W.T.: Non-Markovian quantum-state diffusion: perturbation approach. Phys. Rev. A 60, 91 (1999)

    Article  ADS  Google Scholar 

  44. Yu, T.: Non-Markovian quantum trajectories versus master equations: finite-temperature heat bath. Phys. Rev. A 69, 062107 (2004)

    Article  ADS  Google Scholar 

  45. Shi, W., Zhao, X.Y., Yu, T.: Non-Markovian fermionic stochastic Schrodinger equation for open system dynamics. Phys. Rev A 87, 052127 (2013)

    Article  ADS  Google Scholar 

  46. Chen, Y., You, J.Q., Yu, T.: Exact non-markovian master equations for multiple qubit systems: quantum-trajectory approach. Phys. Rev. A 90, 052104 (2014)

    Article  ADS  Google Scholar 

  47. Luo, D.-W., Lam, C.-H., Wu, L.-A., Yu, T., Lin, H.-Q., You, J.Q.: Higher-order solutions to non-Markovian quantum dynamics via a hierarchical functional derivative. Phys. Rev. A 92, 022119 (2015)

    Article  ADS  Google Scholar 

  48. Novikov, E.A.: Functionals and the random-force method in turbulence theory. Phys. JETP 20, 1290 (1965)

    ADS  MathSciNet  Google Scholar 

  49. Budini, A.A.: Quantum systems subject to the action of classical stochastic fields. Phys. Rev. A 64, 052110 (2001)

    Article  ADS  Google Scholar 

  50. Apollaro, T., Palma, G.M., Nandkishore, R., Silva, A., Marino, J.: Remnants of Anderson localization in prethermalization induced by white noise. Phys. Rev. B 98, 054302 (2018)

    Article  ADS  Google Scholar 

  51. Wang, Z.M., Wu, L.A., Modugno, M., Byrd, M.S., Yu, T., You, J.Q.: Fault-tolerant breathing pattern in optical lattices as a dynamical quantum memory. Phys. Rev. A 89, 042326 (2014)

    Article  ADS  Google Scholar 

  52. Zhang, J.F., et al.: Matrix-element distributions as a signature of entanglement generation. Phys. Rev. A 72, 022331 (2005)

    Article  Google Scholar 

  53. Nikolopoulos, M., Lambroupoulos, P.: Beyond single-photon localization at the edge of a photonic band gap. Phys. Rev. A 61, 053812 (2000)

    Article  ADS  Google Scholar 

  54. Breuer, H.P., Faller, D., Kappler, B., Petruccione, F.: Non-Markovian dynamics in pulsed-and continuous-wave atom lasers. Phys. Rev. A 60, 3188 (1999)

    Article  ADS  Google Scholar 

  55. Wang, Z.-M., Wu, L.-A., Jing, J., Shao, B., Yu, T.: Nonperturbative dynamical decoupling control: a spin-chain model. Phys. Rev. A 86, 032303 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Quanzhen Ding and Dr. Dawei Luo for helpful discussions. This material is based upon work supported by the NSFC (Grants Nos. 11475160, 61575180), the Natural Science Foundation of Shandong Province (Grants Nos. ZR2014AM023, ZR2014AQ026). Z.M.W. thanks the China Scholarship Council (CSC) No. 201606335034 for this scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhao-Ming Wang or Yong-Jian Gu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, FH., Wang, ZM. & Gu, YJ. Quantum state transfer through a spin chain in two non-Markovian baths. Quantum Inf Process 18, 193 (2019). https://doi.org/10.1007/s11128-018-2164-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2164-7

Keywords

Navigation